新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第08講 函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對稱性(含解析)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第08講 函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對稱性(含解析)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第08講 函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對稱性(含解析)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第08講 函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對稱性(含解析)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第08講 函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對稱性(含解析)_第5頁
已閱讀5頁,還剩46頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第08講函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對稱性(精講)題型目錄一覽①函數(shù)的奇偶性②函數(shù)奇偶性的應(yīng)用③函數(shù)的周期性④函數(shù)的對稱性⑤函數(shù)性質(zhì)的綜合應(yīng)用一、知識點梳理一、知識點梳理1.函數(shù)的奇偶性奇偶性定義圖象特點偶函數(shù)如果對于函數(shù)SKIPIF1<0的定義域內(nèi)任意一個SKIPIF1<0,都有SKIPIF1<0,那么函數(shù)SKIPIF1<0就叫做偶函數(shù)關(guān)于SKIPIF1<0軸對稱奇函數(shù)如果對于函數(shù)SKIPIF1<0的定義域內(nèi)任意一個SKIPIF1<0,都有SKIPIF1<0,那么函數(shù)SKIPIF1<0就叫做奇函數(shù)關(guān)于原點對稱注意:由函數(shù)奇偶性的定義可知,函數(shù)具有奇偶性的一個前提條件是:對于定義域內(nèi)的任意一個SKIPIF1<0,SKIPIF1<0也在定義域內(nèi)(即定義域關(guān)于原點對稱).2.函數(shù)的對稱性(1)若函數(shù)SKIPIF1<0為偶函數(shù),則函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對稱.(2)若函數(shù)SKIPIF1<0為奇函數(shù),則函數(shù)SKIPIF1<0關(guān)于點SKIPIF1<0對稱.(3)若SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對稱.(4)若SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于點SKIPIF1<0對稱.3.函數(shù)的周期性(1)周期函數(shù):對于函數(shù)SKIPIF1<0,如果存在一個非零常數(shù)SKIPIF1<0,使得當(dāng)SKIPIF1<0取定義域內(nèi)的任何值時,都有SKIPIF1<0,那么就稱函數(shù)SKIPIF1<0為周期函數(shù),稱SKIPIF1<0為這個函數(shù)的周期.(2)最小正周期:如果在周期函數(shù)SKIPIF1<0的所有周期中存在一個最小的正數(shù),那么稱這個最小整數(shù)叫做SKIPIF1<0的最小正周期.【常用結(jié)論】1.奇偶性技巧(1)若奇函數(shù)SKIPIF1<0在SKIPIF1<0處有意義,則有SKIPIF1<0;(2)對于運算函數(shù)有如下結(jié)論:奇SKIPIF1<0奇=奇;偶SKIPIF1<0偶=偶;奇SKIPIF1<0偶=非奇非偶;奇SKIPIF1<0奇=偶;奇SKIPIF1<0偶=奇;偶SKIPIF1<0偶=偶.(3)常見奇偶性函數(shù)模型奇函數(shù):=1\*GB3①函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.=2\*GB3②函數(shù)SKIPIF1<0.=3\*GB3③函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0=4\*GB3④函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.注意:關(guān)于=1\*GB3①式,可以寫成函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.偶函數(shù):=1\*GB3①函數(shù)SKIPIF1<0.=2\*GB3②函數(shù)SKIPIF1<0.=3\*GB3③函數(shù)SKIPIF1<0類型的一切函數(shù).2.周期性技巧SKIPIF1<03.函數(shù)的的對稱性與周期性的關(guān)系(1)若函數(shù)SKIPIF1<0有兩條對稱軸SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0;(2)若函數(shù)SKIPIF1<0的圖象有兩個對稱中心SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0;(3)若函數(shù)SKIPIF1<0有一條對稱軸SKIPIF1<0和一個對稱中心SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0.4.對稱性技巧(1)若函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0.(2)若函數(shù)SKIPIF1<0關(guān)于點SKIPIF1<0對稱,則SKIPIF1<0.(3)函數(shù)SKIPIF1<0與SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,函數(shù)SKIPIF1<0與SKIPIF1<0關(guān)于原點對稱.二、題型分類精講二、題型分類精講真題刷刷刷真題刷刷刷一、單選題1.(2021·全國·高考真題)下列函數(shù)中是增函數(shù)的為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)基本初等函數(shù)的性質(zhì)逐項判斷后可得正確的選項.【詳解】對于A,SKIPIF1<0為SKIPIF1<0上的減函數(shù),不合題意,舍.對于B,SKIPIF1<0為SKIPIF1<0上的減函數(shù),不合題意,舍.對于C,SKIPIF1<0在SKIPIF1<0為減函數(shù),不合題意,舍.對于D,SKIPIF1<0為SKIPIF1<0上的增函數(shù),符合題意,故選:D.2.(2021·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0,則下列函數(shù)中為奇函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】分別求出選項的函數(shù)解析式,再利用奇函數(shù)的定義即可.【詳解】由題意可得SKIPIF1<0,對于A,SKIPIF1<0不是奇函數(shù);對于B,SKIPIF1<0是奇函數(shù);對于C,SKIPIF1<0,定義域不關(guān)于原點對稱,不是奇函數(shù);對于D,SKIPIF1<0,定義域不關(guān)于原點對稱,不是奇函數(shù).故選:B【點睛】本題主要考查奇函數(shù)定義,考查學(xué)生對概念的理解,是一道容易題.3.(2021·全國·高考真題)設(shè)SKIPIF1<0是定義域為R的奇函數(shù),且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意利用函數(shù)的奇偶性和函數(shù)的遞推關(guān)系即可求得SKIPIF1<0的值.【詳解】由題意可得:SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0.故選:C.【點睛】關(guān)鍵點點睛:本題主要考查了函數(shù)的奇偶性和函數(shù)的遞推關(guān)系式,靈活利用所給的條件進行轉(zhuǎn)化是解決本題的關(guān)鍵.4.(2021·浙江·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0,則圖象為如圖的函數(shù)可能是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由函數(shù)的奇偶性可排除A、B,結(jié)合導(dǎo)數(shù)判斷函數(shù)的單調(diào)性可判斷C,即可得解.【詳解】對于A,SKIPIF1<0,該函數(shù)為非奇非偶函數(shù),與函數(shù)圖象不符,排除A;對于B,SKIPIF1<0,該函數(shù)為非奇非偶函數(shù),與函數(shù)圖象不符,排除B;對于C,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,與圖象不符,排除C.故選:D.5.(2022·全國·統(tǒng)考高考真題)如圖是下列四個函數(shù)中的某個函數(shù)在區(qū)間SKIPIF1<0的大致圖像,則該函數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由函數(shù)圖像的特征結(jié)合函數(shù)的性質(zhì)逐項排除即可得解.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,故排除B;設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,故排除C;設(shè)SKIPIF1<0,則SKIPIF1<0,故排除D.故選:A.6.(2021·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】推導(dǎo)出函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),由已知條件得出SKIPIF1<0,結(jié)合已知條件可得出結(jié)論.【詳解】因為函數(shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,可得SKIPIF1<0,因為函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),因為函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,故SKIPIF1<0,其它三個選項未知.故選:B.7.(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0的定義域為R,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.1【答案】A【分析】法一:根據(jù)題意賦值即可知函數(shù)SKIPIF1<0的一個周期為SKIPIF1<0,求出函數(shù)一個周期中的SKIPIF1<0的值,即可解出.【詳解】[方法一]:賦值加性質(zhì)因為SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),令SKIPIF1<0得,SKIPIF1<0,即有SKIPIF1<0,從而可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的一個周期為SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以一個周期內(nèi)的SKIPIF1<0.由于22除以6余4,所以SKIPIF1<0.故選:A.[方法二]:【最優(yōu)解】構(gòu)造特殊函數(shù)由SKIPIF1<0,聯(lián)想到余弦函數(shù)和差化積公式SKIPIF1<0,可設(shè)SKIPIF1<0,則由方法一中SKIPIF1<0知SKIPIF1<0,解得SKIPIF1<0,取SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0符合條件,因此SKIPIF1<0的周期SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,由于22除以6余4,所以SKIPIF1<0.故選:A.【整體點評】法一:利用賦值法求出函數(shù)的周期,即可解出,是該題的通性通法;法二:作為選擇題,利用熟悉的函數(shù)使抽象問題具體化,簡化推理過程,直接使用具體函數(shù)的性質(zhì)解題,簡單明了,是該題的最優(yōu)解.8.(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0的定義域均為R,且SKIPIF1<0.若SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)對稱性和已知條件得到SKIPIF1<0,從而得到SKIPIF1<0,SKIPIF1<0,然后根據(jù)條件得到SKIPIF1<0的值,再由題意得到SKIPIF1<0從而得到SKIPIF1<0的值即可求解.【詳解】因為SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,代入得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,聯(lián)立得,SKIPIF1<0,所以SKIPIF1<0的圖像關(guān)于點SKIPIF1<0中心對稱,因為函數(shù)SKIPIF1<0的定義域為R,所以SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.故選:D【點睛】含有對稱軸或?qū)ΨQ中心的問題往往條件比較隱蔽,考生需要根據(jù)已知條件進行恰當(dāng)?shù)霓D(zhuǎn)化,然后得到所需的一些數(shù)值或關(guān)系式從而解題.9.(2021·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】通過SKIPIF1<0是奇函數(shù)和SKIPIF1<0是偶函數(shù)條件,可以確定出函數(shù)解析式SKIPIF1<0,進而利用定義或周期性結(jié)論,即可得到答案.【詳解】[方法一]:因為SKIPIF1<0是奇函數(shù),所以SKIPIF1<0①;因為SKIPIF1<0是偶函數(shù),所以SKIPIF1<0②.令SKIPIF1<0,由①得:SKIPIF1<0,由②得:SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,由①得:SKIPIF1<0,所以SKIPIF1<0.思路一:從定義入手.SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0.[方法二]:因為SKIPIF1<0是奇函數(shù),所以SKIPIF1<0①;因為SKIPIF1<0是偶函數(shù),所以SKIPIF1<0②.令SKIPIF1<0,由①得:SKIPIF1<0,由②得:SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,由①得:SKIPIF1<0,所以SKIPIF1<0.思路二:從周期性入手由兩個對稱性可知,函數(shù)SKIPIF1<0的周期SKIPIF1<0.所以SKIPIF1<0.故選:D.【點睛】在解決函數(shù)性質(zhì)類問題的時候,我們通??梢越柚恍┒壗Y(jié)論,求出其周期性進而達到簡便計算的效果.二、多選題10.(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0,記SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0均為偶函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】方法一:轉(zhuǎn)化題設(shè)條件為函數(shù)的對稱性,結(jié)合原函數(shù)與導(dǎo)函數(shù)圖象的關(guān)系,根據(jù)函數(shù)的性質(zhì)逐項判斷即可得解.【詳解】[方法一]:對稱性和周期性的關(guān)系研究對于SKIPIF1<0,因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0即SKIPIF1<0①,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,則SKIPIF1<0,故C正確;對于SKIPIF1<0,因為SKIPIF1<0為偶函數(shù),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,由①求導(dǎo),和SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,因為其定義域為R,所以SKIPIF1<0,結(jié)合SKIPIF1<0關(guān)于SKIPIF1<0對稱,從而周期SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故B正確,D錯誤;若函數(shù)SKIPIF1<0滿足題設(shè)條件,則函數(shù)SKIPIF1<0(C為常數(shù))也滿足題設(shè)條件,所以無法確定SKIPIF1<0的函數(shù)值,故A錯誤.故選:BC.[方法二]:【最優(yōu)解】特殊值,構(gòu)造函數(shù)法.由方法一知SKIPIF1<0周期為2,關(guān)于SKIPIF1<0對稱,故可設(shè)SKIPIF1<0,則SKIPIF1<0,顯然A,D錯誤,選BC.故選:BC.[方法三]:因為SKIPIF1<0,SKIPIF1<0均為偶函數(shù),所以SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故C正確;函數(shù)SKIPIF1<0,SKIPIF1<0的圖象分別關(guān)于直線SKIPIF1<0對稱,又SKIPIF1<0,且函數(shù)SKIPIF1<0可導(dǎo),所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故B正確,D錯誤;若函數(shù)SKIPIF1<0滿足題設(shè)條件,則函數(shù)SKIPIF1<0(C為常數(shù))也滿足題設(shè)條件,所以無法確定SKIPIF1<0的函數(shù)值,故A錯誤.故選:BC.【點評】方法一:根據(jù)題意賦值變換得到函數(shù)的性質(zhì),即可判斷各選項的真假,轉(zhuǎn)化難度較高,是該題的通性通法;方法二:根據(jù)題意得出的性質(zhì)構(gòu)造特殊函數(shù),再驗證選項,簡單明了,是該題的最優(yōu)解.三、填空題11.(2021·全國·統(tǒng)考高考真題)寫出一個同時具有下列性質(zhì)①②③的函數(shù)SKIPIF1<0_______.①SKIPIF1<0;②當(dāng)SKIPIF1<0時,SKIPIF1<0;③SKIPIF1<0是奇函數(shù).【答案】SKIPIF1<0(答案不唯一,SKIPIF1<0均滿足)【分析】根據(jù)冪函數(shù)的性質(zhì)可得所求的SKIPIF1<0.【詳解】取SKIPIF1<0,則SKIPIF1<0,滿足①,SKIPIF1<0,SKIPIF1<0時有SKIPIF1<0,滿足②,SKIPIF1<0的定義域為SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0是奇函數(shù),滿足③.故答案為:SKIPIF1<0(答案不唯一,SKIPIF1<0均滿足)四、雙空題12.(2022·全國·統(tǒng)考高考真題)若SKIPIF1<0是奇函數(shù),則SKIPIF1<0_____,SKIPIF1<0______.【答案】SKIPIF1<0;SKIPIF1<0.【分析】根據(jù)奇函數(shù)的定義即可求出.【詳解】[方法一]:奇函數(shù)定義域的對稱性若SKIPIF1<0,則SKIPIF1<0的定義域為SKIPIF1<0,不關(guān)于原點對稱SKIPIF1<0若奇函數(shù)的SKIPIF1<0有意義,則SKIPIF1<0且SKIPIF1<0SKIPIF1<0且SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù),定義域關(guān)于原點對稱,SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0;SKIPIF1<0.[方法二]:函數(shù)的奇偶性求參SKIPIF1<0SKIPIF1<0SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0[方法三]:因為函數(shù)SKIPIF1<0為奇函數(shù),所以其定義域關(guān)于原點對稱.由SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,即函數(shù)的定義域為SKIPIF1<0,再由SKIPIF1<0可得,SKIPIF1<0.即SKIPIF1<0,在定義域內(nèi)滿足SKIPIF1<0,符合題意.故答案為:SKIPIF1<0;SKIPIF1<0.題型一函數(shù)的奇偶性策略方法判斷函數(shù)奇偶性的方法(1)定義法:(2)圖象法:(3)性質(zhì)法:在公共定義域內(nèi)有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.【典例1】判斷下列函數(shù)的奇偶性:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.【答案】(1)偶函數(shù)(2)奇函數(shù)(3)奇函數(shù)(4)非奇非偶函數(shù)【分析】(1)利用偶函數(shù)的定義可判斷函數(shù)的奇偶性;(2)利用奇函數(shù)的定義可判斷函數(shù)的奇偶性;(3)利用奇函數(shù)的定義可判斷函數(shù)的奇偶性;(4)利用反例可判斷該函數(shù)為非奇非偶函數(shù).【詳解】(1)SKIPIF1<0的定義域為SKIPIF1<0,它關(guān)于原點對稱.SKIPIF1<0,故SKIPIF1<0為偶函數(shù).(2)SKIPIF1<0的定義域為SKIPIF1<0,它關(guān)于原點對稱.SKIPIF1<0,故SKIPIF1<0為奇函數(shù).(3)SKIPIF1<0的定義域為SKIPIF1<0,它關(guān)于原點對稱.SKIPIF1<0,故SKIPIF1<0為奇函數(shù).(4)SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0為非奇非偶函數(shù).【題型訓(xùn)練】一、單選題1.函數(shù)SKIPIF1<0的奇偶性是()A.是奇函數(shù),不是偶函數(shù)B.是偶函數(shù),不是奇函數(shù)C.既是奇函數(shù),也是偶函數(shù)D.非奇非偶函數(shù)【答案】A【分析】由奇偶性定義直接判斷即可.【詳解】SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是奇函數(shù),不是偶函數(shù).故選:A.2.已知奇函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由SKIPIF1<0得SKIPIF1<0,代入得SKIPIF1<0,根據(jù)奇函數(shù)即可求解.【詳解】當(dāng)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0為奇函數(shù),所以當(dāng)SKIPIF1<0時,SKIPIF1<0.故選:A.3.若函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0(

)A.2 B.1 C.0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0為奇函數(shù)求得SKIPIF1<0,即可由分段函數(shù)求值.【詳解】函數(shù)SKIPIF1<0為奇函數(shù),設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.故選:C.4.函數(shù)SKIPIF1<0的部分圖象大致為(

)A. B.C. D.【答案】C【分析】根據(jù)函數(shù)的奇偶性排除AB,再由特殊值排除D即可得解.【詳解】因為SKIPIF1<0的定義域為SKIPIF1<0,關(guān)于原點對稱,所以SKIPIF1<0,即函數(shù)為奇函數(shù),排除AB,當(dāng)SKIPIF1<0時,SKIPIF1<0,排除D.故選:C二、填空題5.函數(shù)SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0時,SKIPIF1<0___________.【答案】SKIPIF1<0【分析】由偶函數(shù)的定義求解.【詳解】SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0是偶函數(shù),∴SKIPIF1<0,故答案為:SKIPIF1<0.6.SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0__________.【答案】4【分析】令SKIPIF1<0,可得SKIPIF1<0為奇函數(shù),再根據(jù)奇函數(shù)的性質(zhì)求解.【詳解】令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0為奇函數(shù),由SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.故答案為:4.7.已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的解集是__________.【答案】SKIPIF1<0【分析】利用奇偶性求出函數(shù)SKIPIF1<0的解析式SKIPIF1<0,分類討論即可求解.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,因為函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,要解不等式SKIPIF1<0,只需SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,綜上,不等式的解集為SKIPIF1<0.故答案為:SKIPIF1<0.三、解答題8.已知函數(shù)SKIPIF1<0(1)求函數(shù)SKIPIF1<0解析式;(2)判斷函數(shù)SKIPIF1<0的奇偶性并加以證明【答案】(1)SKIPIF1<0(2)奇函數(shù),證明見解析【分析】(1)利用換元法,令SKIPIF1<0,得SKIPIF1<0,從而可得SKIPIF1<0;(2)先求函數(shù)定義域,利用奇偶性的定義進行證明.【詳解】(1)令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.(2)奇函數(shù);證明:定義域為SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0為奇函數(shù).9.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的值;(2)令SKIPIF1<0,求證:SKIPIF1<0為奇函數(shù);(3)若銳角SKIPIF1<0滿足SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)證明見解析(3)SKIPIF1<0【分析】(1)將SKIPIF1<0和SKIPIF1<0分別代入解析式求解即可;(2)根據(jù)奇偶性的定義證明即可;(3)根據(jù)奇偶性將不等式化為SKIPIF1<0,利用單調(diào)性定義可證得SKIPIF1<0為SKIPIF1<0上的增函數(shù),由此可得SKIPIF1<0,結(jié)合三角函數(shù)知識可求得結(jié)果.【詳解】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)SKIPIF1<0,則SKIPIF1<0的定義域為SKIPIF1<0;SKIPIF1<0,SKIPIF1<0為奇函數(shù).(3)由SKIPIF1<0得:SKIPIF1<0;SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的增函數(shù),SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0.題型二函數(shù)奇偶性的應(yīng)用策略方法已知函數(shù)奇偶性可以解決的三個問題【典例1】若函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.5 D.7【答案】C【分析】求出SKIPIF1<0時的解析式后,代入SKIPIF1<0可求出結(jié)果.【詳解】因為SKIPIF1<0為奇函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.故選:C【典例2】若函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0、SKIPIF1<0的值是(

)A.SKIPIF1<0 B.SKIPIF1<0不能確定,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0不能確定 D.SKIPIF1<0【答案】D【分析】根據(jù)定義域關(guān)于原點對稱,求得SKIPIF1<0,再根據(jù)SKIPIF1<0,求得SKIPIF1<0的值,即可求解.【詳解】因為函數(shù)SKIPIF1<0是偶函數(shù),可得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,又由SKIPIF1<0,因為函數(shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:D.【典例3】偶函數(shù)SKIPIF1<0滿足:SKIPIF1<0,且在區(qū)間SKIPIF1<0與SKIPIF1<0上分別遞減和遞增,使SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題中所給條件,可畫出符合全部條件的函數(shù)圖象輔助做題.【詳解】根據(jù)題目條件,想象函數(shù)圖象如下:因為SKIPIF1<0,SKIPIF1<0為偶函數(shù),所以SKIPIF1<0,所以當(dāng)SKIPIF1<0和SKIPIF1<0時,SKIPIF1<0,故選:B.【題型訓(xùn)練】一、單選題1.(2023·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0為奇函數(shù),則實數(shù)SKIPIF1<0的值為(

)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意可得SKIPIF1<0,計算可得SKIPIF1<0,經(jīng)檢驗均符合題意,即可得解.【詳解】由SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0的定義域為SKIPIF1<0,符合題意,當(dāng)SKIPIF1<0時,SKIPIF1<0的定義域為SKIPIF1<0符合題意,故選:D2.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用偶函數(shù)的性質(zhì)直接求解即可.【詳解】由已知得,當(dāng)SKIPIF1<0時,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0為偶函數(shù),∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故選:SKIPIF1<0.3.(2023·安徽·校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0為SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0+1 D.SKIPIF1<0【答案】B【分析】由定義在SKIPIF1<0上的奇函數(shù)有SKIPIF1<0,求出SKIPIF1<0的值,再由SKIPIF1<0可得出答案.【詳解】函數(shù)SKIPIF1<0為SKIPIF1<0上的奇函數(shù),則SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0故選:B4.(2023·全國·高三專題練習(xí))定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,若SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)偶函數(shù)及單調(diào)性解不等式即可.【詳解】由題意,SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0.故選:D.5.(2023春·貴州黔東南·高三??茧A段練習(xí))已知偶函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用偶函數(shù)的對稱性可得SKIPIF1<0,即可求解集.【詳解】由偶函數(shù)的對稱性知:SKIPIF1<0在SKIPIF1<0上遞增,則在SKIPIF1<0上遞減,所以SKIPIF1<0,故SKIPIF1<0,可得SKIPIF1<0,所以不等式解集為SKIPIF1<0.故選:D6.(2023·湖南長沙·湖南師大附中校考模擬預(yù)測)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】依題意作函數(shù)圖像,根據(jù)單調(diào)性和奇偶性求解.【詳解】依題意,函數(shù)的大致圖像如下圖:因為SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,則當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,不等式SKIPIF1<0化為SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,即原不等式的解集為SKIPIF1<0;故選:C.二、多選題7.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是偶函數(shù),在區(qū)間SKIPIF1<0上是單調(diào)函數(shù),且SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【分析】根據(jù)函數(shù)的單調(diào)性和奇偶性直接求解.【詳解】函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是單調(diào)函數(shù),又SKIPIF1<0,且SKIPIF1<0,故此函數(shù)在區(qū)間SKIPIF1<0上是減函數(shù).由已知條件及偶函數(shù)性質(zhì),知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù).對于A,SKIPIF1<0,故SKIPIF1<0,故A錯誤;對于B,SKIPIF1<0,故SKIPIF1<0,故B正確;對于C,SKIPIF1<0,故C錯誤;對于D,SKIPIF1<0,故D正確.故選:BD.8.(2023·山東菏澤·山東省東明縣第一中學(xué)校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0為奇函數(shù),且對SKIPIF1<0,SKIPIF1<0恒成立,則(

)A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【分析】根據(jù)函數(shù)定義換算可得SKIPIF1<0為偶函數(shù),根據(jù)偶函數(shù)和奇函數(shù)性質(zhì)可知SKIPIF1<0為周期函數(shù),再根據(jù)函數(shù)周期性和函數(shù)特殊值即可得出選項.【詳解】因為SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,故SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0為偶函數(shù),A錯誤;SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,B正確;SKIPIF1<0,又SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,所以SKIPIF1<0,所以SKIPIF1<0,C正確;又SKIPIF1<0,所以SKIPIF1<0是以4為周期的函數(shù),SKIPIF1<0,D正確.故選:BCD.三、填空題9.(2023·廣東潮州·統(tǒng)考二模)已知函數(shù)SKIPIF1<0(其中SKIPIF1<0是自然對數(shù)的底數(shù),SKIPIF1<0)是奇函數(shù),則實數(shù)SKIPIF1<0的值為______.【答案】SKIPIF1<0【分析】利用奇函數(shù)的性質(zhì)可得出SKIPIF1<0,結(jié)合對數(shù)運算可得出實數(shù)SKIPIF1<0的值.【詳解】對于函數(shù)SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,因為函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.10.(2023·河南周口·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,則不等式SKIPIF1<0的解集為______.【答案】SKIPIF1<0【分析】由題意和偶函數(shù)的性質(zhì)可知函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù),結(jié)合SKIPIF1<0,分類討論當(dāng)SKIPIF1<0、SKIPIF1<0時,利用函數(shù)的單調(diào)性解不等式即可.【詳解】因為函數(shù)SKIPIF1<0是定義在R上的偶函數(shù),且在SKIPIF1<0上單調(diào)遞減所以SKIPIF1<0在SKIPIF1<0上為增函數(shù),由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,有SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,有SKIPIF1<0,解得SKIPIF1<0,綜上,不等式SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<0.11.(2023春·江蘇南通·高三海安高級中學(xué)??茧A段練習(xí))定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,滿足SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),若SKIPIF1<0,則SKIPIF1<0__________.【答案】1【分析】根據(jù)SKIPIF1<0為偶函數(shù)、SKIPIF1<0為奇函數(shù)的性質(zhì),利用賦值法可得答案.【詳解】若SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0.故答案為:1.12.(2023春·福建廈門·高三廈門一中??计谥校┮阎瘮?shù)SKIPIF1<0的定義域為SKIPIF1<0,若SKIPIF1<0為奇函數(shù),且SKIPIF1<0,則SKIPIF1<0_________.【答案】SKIPIF1<0【分析】推導(dǎo)出函數(shù)SKIPIF1<0為周期函數(shù),確定該函數(shù)的周期,計算出SKIPIF1<0的值,結(jié)合SKIPIF1<0以及周期性可求得SKIPIF1<0的值.【詳解】因為SKIPIF1<0為奇函數(shù),則SKIPIF1<0,所以,SKIPIF1<0,在等式SKIPIF1<0中,令SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,又因為SKIPIF1<0,則SKIPIF1<0,①所以,SKIPIF1<0,②由①②可得SKIPIF1<0,即SKIPIF1<0,所以,函數(shù)SKIPIF1<0為周期函數(shù),且該函數(shù)的周期為SKIPIF1<0,所以,SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論