版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024-2025學(xué)年廣東省廣州中科高三下-期中調(diào)研數(shù)學(xué)試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)為拋物線的焦點,,,為拋物線上三點,若,則().A.9 B.6 C. D.2.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值3.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.64.下列函數(shù)中既關(guān)于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.5.某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1406.設(shè)函數(shù),若函數(shù)有三個零點,則()A.12 B.11 C.6 D.37.拋物線的焦點為,準線為,,是拋物線上的兩個動點,且滿足,設(shè)線段的中點在上的投影為,則的最大值是()A. B. C. D.8.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.9.設(shè)為等差數(shù)列的前項和,若,則A. B.C. D.10.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.11.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.12.近年來,隨著網(wǎng)絡(luò)的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機抽取了名大學(xué)生進行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計不足的大學(xué)生使用主要玩游戲;③可以估計使用主要找人聊天的大學(xué)生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過橢圓中心的直線與橢圓相交于、兩點(點在第一象限),過點作軸的垂線,垂足為點.設(shè)直線與橢圓的另一個交點為.則的值是________________.14.設(shè),滿足約束條件,若目標函數(shù)的最大值為,則的最小值為______.15.在平面直角坐標系xOy中,已知A0,a,B3,a+416.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,(其中).(1)求;(2)求證:當時,.18.(12分)已知△ABC的兩個頂點A,B的坐標分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.(1)求曲線G的方程;(2)設(shè)直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.19.(12分)已知橢圓:過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.(1)證明:當取得最小值時,橢圓的離心率為.(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.20.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,.(1)證明:平面平面ABCD;(2)設(shè)H在AC上,,若,求PH與平面PBC所成角的正弦值.21.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.22.(10分)對于很多人來說,提前消費的認識首先是源于信用卡,在那個工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風(fēng)靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風(fēng)來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了100人進行抽樣分析,得到如下列聯(lián)表(單位:人)經(jīng)常使用信用卡偶爾或不用信用卡合計40歲及以下15355040歲以上203050合計3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關(guān)?(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人贈送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機抽取3人贈送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機變量的分布列、數(shù)學(xué)期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.635
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.本題考查利用拋物線定義求焦半徑的問題,考查學(xué)生等價轉(zhuǎn)化的能力,是一道容易題.2.D【解析】
根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結(jié)論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.本題考查統(tǒng)計圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.3.C【解析】
根據(jù)列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C本小題主要考查向量垂直的表示,考查向量數(shù)量積的運算,考查向量模的求法,屬于基礎(chǔ)題.4.C【解析】
根據(jù)函數(shù)的對稱性和單調(diào)性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關(guān)于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關(guān)于直線對稱,則錯誤;故選:C.本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎(chǔ)題.5.C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C6.B【解析】
畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點個數(shù),然后轉(zhuǎn)化求解,即可得出結(jié)果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關(guān)于的方程的解有兩個或三個(時有三個,時有兩個),所以關(guān)于的方程只能有一個根(若有兩個根,則關(guān)于的方程有四個或五個根),由,可得的值分別為,則故選B.本題考查數(shù)形結(jié)合以及函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力,屬于常考題型.7.B【解析】
試題分析:設(shè)在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質(zhì).【名師點晴】在直線與拋物線的位置關(guān)系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準線(或與準線平行的直線)的距離時,常??紤]用拋物線的定義進行問題的轉(zhuǎn)化.象本題弦的中點到準線的距離首先等于兩點到準線距離之和的一半,然后轉(zhuǎn)化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關(guān)系.8.B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應(yīng)用,考查運算求解能力,屬于中等題.9.C【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.10.C【解析】
利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當時,,,故當時,,數(shù)列是等比數(shù)列,則,故,解得,故選.本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎(chǔ).11.B【解析】
通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.12.C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學(xué)生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學(xué)生人數(shù)為,因為,所以③正確.故選:C.本題考查統(tǒng)計中相關(guān)命題真假的判斷,計算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出圖形,設(shè)點,則、,設(shè)點,利用點差法得出,利用斜率公式得出,進而可得出,可得出,由此可求得的值.【詳解】設(shè)點,則、,設(shè)點,則,兩式相減得,即,即,由斜率公式得,,,故,因此,.故答案為:.本題考查橢圓中角的余弦值的求解,涉及了點差法與斜率公式的應(yīng)用,考查計算能力,屬于中等題.14.【解析】
先根據(jù)條件畫出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線,過可行域內(nèi)的點時取得最大值,從而得到一個關(guān)于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當直線過直線與直線的交點時,目標函數(shù)取得最大,即,即,而.故答案為.本題主要考查了基本不等式在最值問題中的應(yīng)用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.15.(-53,【解析】
求出AB的長度,直線方程,結(jié)合△ABC的面積為5,轉(zhuǎn)化為圓心到直線的距離進行求解即可.【詳解】解:AB的斜率k=a+4-a3-0=4=3設(shè)△ABC的高為h,則∵△ABC的面積為5,∴S=12|AB|h=即h=2,直線AB的方程為y﹣a=43x,即4x﹣3y+3若圓x2+y2=9上有且僅有四個不同的點C,則圓心O到直線4x﹣3y+3a=0的距離d=|3a|則應(yīng)該滿足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案為:(-53,本題主要考查直線與圓的位置關(guān)系的應(yīng)用,求出直線方程和AB的長度,轉(zhuǎn)化為圓心到直線的距離是解決本題的關(guān)鍵.16.【解析】
真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.本題考查對數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析【解析】
(1)取,則;取,則,∴;(2)要證,只需證,當時,;假設(shè)當時,結(jié)論成立,即,兩邊同乘以3得:而∴,即時結(jié)論也成立,∴當時,成立.綜上原不等式獲證.18.(1).(2)四邊形OMDN的面積是定值,其定值為.【解析】
(1)根據(jù)三角形內(nèi)切圓的性質(zhì)證得,由此判斷出點的軌跡為橢圓,并由此求得曲線的方程.(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.【詳解】(1)因為圓E為△ABC的內(nèi)切圓,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以點C的軌跡為以點A和點B為焦點的橢圓(點不在軸上),所以c,a=2,b,所以曲線G的方程為,(2)因為,故四邊形為平行四邊形.當直線l的斜率不存在時,則四邊形為為菱形,故直線MN的方程為x=﹣1或x=1,此時可求得四邊形OMDN的面積為.當直線l的斜率存在時,設(shè)直線l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2,x1x2,△=8(4k2+2﹣m2)>0,∴y1+y2=k(x1+x2)+2m,|MN|點O到直線MN的距離d,由,得xD,yD,∵點D在曲線C上,所以將D點坐標代入橢圓方程得1+2k2=2m2,由題意四邊形OMDN為平行四邊形,∴OMDN的面積為S,由1+2k2=2m2得S,故四邊形OMDN的面積是定值,其定值為.本小題主要考查用定義法求軌跡方程,考查橢圓中四邊形面積的計算,考查橢圓中的定值問題,考查運算求解能力,屬于中檔題.19.(1)證明見解析;(2)存在,【解析】
(1)將點代入橢圓方程得到,結(jié)合基本不等式,求得取得最小值時,進而證得橢圓的離心率為.(2)當直線的斜率不存在時,根據(jù)橢圓的對稱性,求得到直線的距離.當直線的斜率存在時,聯(lián)立直線的方程和橢圓方程,寫出韋達定理,利用,則列方程,求得的關(guān)系式,進而求得到直線的距離.根據(jù)上述分析判斷出所求的圓存在,進而求得定圓的方程.【詳解】(1)證明:∵橢圓經(jīng)過點,∴,∴,當且僅當,即時,等號成立,此時橢圓的離心率.(2)解:∵橢圓的焦距為2,∴,又,∴,.當直線的斜率不存在時,由對稱性,設(shè),.∵,在橢圓上,∴,∴,∴到直線的距離.當直線的斜率存在時,設(shè)的方程為.由,得,.設(shè),,則,.∵,∴,∴,∴,即,∴到直線的距離.綜上,到直線的距離為定值,且定值為,故存在定圓:,使得圓與直線總相切.本小題主要考查點和橢圓的位置關(guān)系,考查基本不等式求最值,考查直線和橢圓的位置關(guān)系,考查點到直線的距離公式,考查分類討論的數(shù)學(xué)思想方法,考查運算求解能力,屬于中檔題.20.(1)見解析;(2)【解析】
(1)記,連結(jié),推導(dǎo)出,平面,由此能證明平面平面;(2)推導(dǎo)出,平面,連結(jié),由題意得為的重心,,從而平面平面,進而是與平面所成角,由此能求出與平面所成角的正弦值.【詳解】(1)證明:記,連結(jié),中,,,,,,平面,平面,平面平面.(2)中,,,,,,,,,,平面,∴,連結(jié),由題意得為的重心,,,,平面平面平面,∴在平面的射影落在上,是與平面所成角,中,,,,.與平面所成角的正弦值為.本題考查面面垂直的證明,考查線面角的正弦值的求法,考查線線、線面、面面的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.21.(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金屬材涂層機組操作工操作技能能力考核試卷含答案
- 水工建構(gòu)筑物維護檢修工安全生產(chǎn)知識評優(yōu)考核試卷含答案
- 鋼琴及鍵盤樂器制作工崗前安全文化考核試卷含答案
- 顏料合成工崗前道德考核試卷含答案
- 海信冰箱培訓(xùn)課件
- 冷藏專業(yè)知識培訓(xùn)課件
- 酒店客房服務(wù)規(guī)范與禮儀制度
- 車站設(shè)備維修保養(yǎng)制度
- 采購物資質(zhì)量管理與追溯制度
- 桃花庵歌課件
- ESG理論與實務(wù) 課件 第一章 ESG概述
- 2025-2030共享醫(yī)療檢測設(shè)備行業(yè)基層醫(yī)療機構(gòu)合作模式分析報告
- 食堂餐廳維修項目方案(3篇)
- 醫(yī)用手術(shù)器械講解
- 冰芯氣泡古大氣重建-洞察及研究
- DB37∕T 5031-2015 SMC玻璃鋼檢查井應(yīng)用技術(shù)規(guī)程
- 旅行社計調(diào)職業(yè)技能模擬試卷含答案
- 口腔腫瘤手術(shù)配合方案
- 新疆金川礦業(yè)有限公司堆浸場擴建技改項目環(huán)評報告
- 2025至2030年中國武漢餐飲行業(yè)市場現(xiàn)狀調(diào)查及發(fā)展趨向研判報告
- JG/T 155-2014電動平開、推拉圍墻大門
評論
0/150
提交評論