2022屆遼寧省沈陽市達標名校中考猜題數(shù)學試卷含解析_第1頁
2022屆遼寧省沈陽市達標名校中考猜題數(shù)學試卷含解析_第2頁
2022屆遼寧省沈陽市達標名校中考猜題數(shù)學試卷含解析_第3頁
2022屆遼寧省沈陽市達標名校中考猜題數(shù)學試卷含解析_第4頁
2022屆遼寧省沈陽市達標名校中考猜題數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022屆遼寧省沈陽市達標名校中考猜題數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質(zhì),對人體健康和大氣環(huán)境質(zhì)量有很大危害.2.5μm用科學記數(shù)法可表示為()A. B. C. D.2.如圖,在平面直角坐標系中,是反比例函數(shù)的圖像上一點,過點做軸于點,若的面積為2,則的值是()A.-2 B.2 C.-4 D.43.如圖,O為坐標原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.64.如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)5.已知x=2是關于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為()A.0 B.﹣1 C.1 D.26.如圖,已知點A在反比例函數(shù)y=上,AC⊥x軸,垂足為點C,且△AOC的面積為4,則此反比例函數(shù)的表達式為()A.y= B.y= C.y= D.y=﹣7.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數(shù)為()A.30° B.35° C.40° D.45°8.據(jù)媒體報道,我國最新研制的“察打一體”無人機的速度極快,經(jīng)測試最高速度可達204000米/分,這個數(shù)用科學記數(shù)法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1069.如圖,,交于點,平分,交于.若,則

的度數(shù)為()

A.35o B.45o C.55o D.65o10.函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結論:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④當1<x<3時,x2+(b﹣1)x+c<1.其中正確的個數(shù)為A.1 B.2 C.3 D.411.葉綠體是植物進行光合作用的場所,葉綠體DNA最早發(fā)現(xiàn)于衣藻葉綠體,長約0.00005米.其中,0.00005用科學記數(shù)法表示為()A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣312.如圖,A、B、C三點在正方形網(wǎng)格線的交點處,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.方程的解為__________.14.如圖,AB是⊙O的直徑,點E是的中點,連接AF交過E的切線于點D,AB的延長線交該切線于點C,若∠C=30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____.15.如圖,從一塊直徑是8m的圓形鐵皮上剪出一個圓心角為90°的扇形,將剪下的扇形圍成一個圓錐,圓錐的高是_________m.16.如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標系,點B的坐標為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點,則實數(shù)k的取值范圍是.17.某公司銷售一種進價為21元的電子產(chǎn)品,按標價的九折銷售,仍可獲利20%,則這種電子產(chǎn)品的標價為_________元.18.分式方程-1=的解是x=________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.(1)求證:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的長.20.(6分)某中學開展“漢字聽寫大賽”活動,為了解學生的參與情況,在該校隨機抽取了四個班級學生進行調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:(1)這四個班參與大賽的學生共__________人;(2)請你補全兩幅統(tǒng)計圖;(3)求圖1中甲班所對應的扇形圓心角的度數(shù);(4)若四個班級的學生總數(shù)是160人,全校共2000人,請你估計全校的學生中參與這次活動的大約有多少人.21.(6分)已知:不等式≤2+x(1)求不等式的解;(2)若實數(shù)a滿足a>2,說明a是否是該不等式的解.22.(8分)已知關于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數(shù)m取何值,方程總有兩個實數(shù)根;(2)若方程有一個根的平方等于4,求m的值.23.(8分)計算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣2|24.(10分)一只不透明的袋子中裝有4個質(zhì)地、大小均相同的小球,這些小球分別標有3,4,5,x,甲,乙兩人每次同時從袋中各隨機取出1個小球,并計算2個小球上的數(shù)字之和.記錄后將小球放回袋中攪勻,進行重復試驗,試驗數(shù)據(jù)如下表:摸球總次數(shù)1020306090120180240330450“和為8”出現(xiàn)的頻數(shù)210132430375882110150“和為8”出現(xiàn)的頻率0.200.500.430.400.330.310.320.340.330.33解答下列問題:如果試驗繼續(xù)進行下去,根據(jù)上表提供的數(shù)據(jù),出現(xiàn)和為8的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)和為8的概率是________;如果摸出的2個小球上數(shù)字之和為9的概率是,那么x的值可以為7嗎?為什么?25.(10分)如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點A(-1,2),B(m,-1).求一次函數(shù)與反比例函數(shù)的解析式;在x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標.26.(12分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?27.(12分)為提高市民的環(huán)保意識,倡導“節(jié)能減排,綠色出行”,某市計劃在城區(qū)投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.今年年初,“共享單車”試點投放在某市中心城區(qū)正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點投放中A,B兩車型的數(shù)量比進行投放,且投資總價值不低于184萬元.請問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:大于0而小于1的數(shù)用科學計數(shù)法表示,10的指數(shù)是負整數(shù),其絕對值等于第一個不是0的數(shù)字前所有0的個數(shù).考點:用科學計數(shù)法計數(shù)2、C【解析】

根據(jù)反比例函數(shù)k的幾何意義,求出k的值即可解決問題【詳解】解:∵過點P作PQ⊥x軸于點Q,△OPQ的面積為2,

∴||=2,

∵k<0,

∴k=-1.

故選:C.【點睛】本題考查反比例函數(shù)k的幾何意義,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.3、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標,結合反比例函數(shù)圖象上點的坐標特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標為(35a,4∵點A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標為(10+35b,4∵點F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標特征,解題的關鍵是找出S△AOF=12S菱形OBCA4、B【解析】分析:根據(jù)題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,結合中點坐標公式即可求得點P1的坐標;同理可求得其它各點的坐標,分析可得規(guī)律,進而可得答案.詳解:根據(jù)題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,又∵A的坐標是(1,1),結合中點坐標公式可得P1的坐標是(1,0);同理P1的坐標是(1,﹣1),記P1(a1,b1),其中a1=1,b1=﹣1.根據(jù)對稱關系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同樣可以求得,點P10的坐標為(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴點P1010的坐標是(1010,﹣1),故選:B.點睛:本題考查了對稱的性質(zhì),坐標與圖形的變化---旋轉(zhuǎn),根據(jù)條件求出前邊幾個點的坐標,得到規(guī)律是解題關鍵.5、C【解析】試題分析:把方程的解代入方程,可以求出字母系數(shù)a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點】一元二次方程的解;一元二次方程的定義.6、C【解析】

由雙曲線中k的幾何意義可知據(jù)此可得到|k|的值;由所給圖形可知反比例函數(shù)圖象的兩支分別在第一、三象限,從而可確定k的正負,至此本題即可解答.【詳解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故選C.【點睛】本題是關于反比例函數(shù)的題目,需結合反比例函數(shù)中系數(shù)k的幾何意義解答;7、B【解析】分析:根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點睛:此題考查平行線的性質(zhì),關鍵是根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答.8、C【解析】試題分析:204000米/分,這個數(shù)用科學記數(shù)法表示2.04×105,故選C.考點:科學記數(shù)法—表示較大的數(shù).9、D【解析】分析:根據(jù)平行線的性質(zhì)求得∠BEC的度數(shù),再由角平分線的性質(zhì)即可求得∠CFE的度數(shù).詳解:又∵EF平分∠BEC,.故選D.點睛:本題主要考查了平行線的性質(zhì)和角平分線的定義,熟知平行線的性質(zhì)和角平分線的定義是解題的關鍵.10、B【解析】分析:∵函數(shù)y=x2+bx+c與x軸無交點,∴b2﹣4c<1;故①錯誤。當x=1時,y=1+b+c=1,故②錯誤?!弋攛=3時,y=9+3b+c=3,∴3b+c+6=1。故③正確?!弋?<x<3時,二次函數(shù)值小于一次函數(shù)值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正確。綜上所述,正確的結論有③④兩個,故選B。11、C【解析】絕對值小于1的負數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定,0.00005=,故選C.12、D【解析】

過C點作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問題,轉(zhuǎn)化為在Rt△BCD中求tanB.【詳解】過C點作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對應角相等;三角函數(shù)的定義及三角函數(shù)值的求法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

兩邊同時乘,得到整式方程,解整式方程后進行檢驗即可.【詳解】解:兩邊同時乘,得,解得,檢驗:當時,≠0,所以x=1是原分式方程的根,故答案為:x=1.【點睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.14、【解析】

首先根據(jù)切線的性質(zhì)及圓周角定理得CE的長以及圓周角度數(shù),進而利用銳角三角函數(shù)關系得出DE,AD的長,利用S△ADE﹣S扇形FOE=圖中陰影部分的面積求出即可.【詳解】解:連接OE,OF、EF,∵DE是切線,∴OE⊥DE,∵∠C=30°,OB=OE=2,∴∠EOC=60°,OC=2OE=4,∴CE=OC×sin60°=∵點E是弧BF的中點,∴∠EAB=∠DAE=30°,∴F,E是半圓弧的三等分點,∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=∴DE=,∴AD=DE×tan60°=∴S△ADE∵△FOE和△AEF同底等高,∴△FOE和△AEF面積相等,∴圖中陰影部分的面積為:S△ADE﹣S扇形FOE故答案為【點睛】此題主要考查了扇形的面積計算以及三角形面積求法等知識,根據(jù)已知得出△FOE和△AEF面積相等是解題關鍵.15、【解析】分析:首先連接AO,求出AB的長度是多少;然后求出扇形的弧長弧BC為多少,進而求出扇形圍成的圓錐的底面半徑是多少;最后應用勾股定理,求出圓錐的高是多少即可.詳解:如圖1,連接AO,∵AB=AC,點O是BC的中點,∴AO⊥BC,又∵∴∴∴弧BC的長為:(m),∴將剪下的扇形圍成的圓錐的半徑是:(m),∴圓錐的高是:故答案為.點睛:考查圓錐的計算,正確理解圓錐的側面展開圖與原來扇形之間的關系式解決本題的關鍵.16、-2<k<。【解析】

由圖可知,∠AOB=45°,∴直線OA的解析式為y=x,聯(lián)立,消掉y得,,由解得,.∴當時,拋物線與OA有一個交點,此交點的橫坐標為1.∵點B的坐標為(2,0),∴OA=2,∴點A的坐標為().∴交點在線段AO上.當拋物線經(jīng)過點B(2,0)時,,解得k=-2.∴要使拋物線與扇形OAB的邊界總有兩個公共點,實數(shù)k的取值范圍是-2<k<.【詳解】請在此輸入詳解!17、28【解析】設這種電子產(chǎn)品的標價為x元,由題意得:0.9x?21=21×20%,解得:x=28,所以這種電子產(chǎn)品的標價為28元.故答案為28.18、-5【解析】兩邊同時乘以(x+3)(x-3),得6-x2+9=-x2-3x,解得:x=-5,檢驗:當x=-5時,(x+3)(x-3)≠0,所以x=-5是分式方程的解,故答案為:-5.【點睛】本題考查了解分式方程,解題的關鍵是方程兩邊同時乘以最簡公分母,切記要進行檢驗.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2).【解析】

(1)由切線的性質(zhì)可知∠DAB=90°,由直角所對的圓周為90°可知∠ACB=90°,根據(jù)同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性質(zhì)可知∠B=∠OCB,由對頂角的性質(zhì)可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)題意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE?AD,故此可求得DE=,于是可求得AE=.【詳解】解:(1)∵AD是圓O的切線,∴∠DAB=90°.∵AB是圓O的直徑,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.解得:DE=,∴AE=AD﹣DE=.20、(1)100;(2)見解析;(3)108°;(4)1250.【解析】試題分析:(1)根據(jù)乙班參賽30人,所占比為20%,即可求出這四個班總人數(shù);(2)根據(jù)丁班參賽35人,總人數(shù)是100,即可求出丁班所占的百分比,再用整體1減去其它所占的百分比,即可得出丙所占的百分比,再乘以參賽得總人數(shù),即可得出丙班參賽得人數(shù),從而補全統(tǒng)計圖;(3)根據(jù)甲班級所占的百分比,再乘以360°,即可得出答案;(4)根據(jù)樣本估計總體,可得答案.試題解析:(1)這四個班參與大賽的學生數(shù)是:30÷30%=100(人);故答案為100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,則丙班得人數(shù)是:100×15%=15(人);如圖:(3)甲班級所對應的扇形圓心角的度數(shù)是:30%×360°=108°;(4)根據(jù)題意得:2000×=1250(人).答:全校的學生中參與這次活動的大約有1250人.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;樣本估計總體.21、(1)x≥﹣1;(2)a是不等式的解.【解析】

(1)根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得.

(2)根據(jù)不等式的解的定義求解可得【詳解】解:(1)去分母得:2﹣x≤3(2+x),去括號得:2﹣x≤6+3x,移項、合并同類項得:﹣4x≤4,系數(shù)化為1得:x≥﹣1.(2)∵a>2,不等式的解集為x≥﹣1,而2>﹣1,∴a是不等式的解.【點睛】本題考查了解一元一次不等式,掌握解一元一次不等式的步驟是解題的關鍵22、(1)證明見解析;(2)m的值為1或﹣2.【解析】

(1)計算根的判別式的值可得(m+1)2≥1,由此即可證得結論;(2)根據(jù)題意得到x=±2是原方程的根,將其代入列出關于m新方程,通過解新方程求得m的值即可.【詳解】(1)證明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,∴無論實數(shù)m取何值,方程總有兩個實數(shù)根;(2)解:∵方程有一個根的平方等于2,∴x=±2是原方程的根,當x=2時,2﹣2(m+3)+m+2=1.解得m=1;當x=﹣2時,2+2(m+3)+m+2=1,解得m=﹣2.綜上所述,m的值為1或﹣2.【點睛】本題考查了根的判別式及一元二次方程的解的定義,在解答(2)時要分類討論,這是此題的易錯點.23、1【解析】

原式第一項利用乘方法則計算,第二項利用特殊角的三角函數(shù)值計算,第三項利用零指數(shù)冪法則計算,最后一項利用絕對值的代數(shù)意義化簡即可得到結果.【詳解】解:原式=1﹣1×22+1+2=1﹣2+1+2【點睛】此題考查了含有特殊角的三角函數(shù)值的運算,熟練掌握各運算法則是解題的關鍵.24、(1)出現(xiàn)“和為8”的概率是0.33;(2)x的值不能為7.【解析】

(1)利用頻率估計概率結合表格中數(shù)據(jù)得出答案即可;(2)假設x=7,根據(jù)題意先列出樹狀圖,得出和為9的概率,再與進行比較,即可得出答案.【詳解】解:(1)隨著試驗次數(shù)不斷增加,出現(xiàn)“和為8”的頻率逐漸穩(wěn)定在0.33,故出現(xiàn)“和為8”的概率是0.33.(2)x的值不能為7.理由:假設x=7,則P(和為9)=≠,所以x的值不能為7.【點睛】此題主要考查了利用頻率估計概率以及樹狀圖法求概率,正確畫出樹狀圖是解題關鍵.25、(1)反比例函數(shù)的解析式為;一次函數(shù)的解析式為y=-x+1;(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】

(1)將A點代入求出k2,從而求出反比例函數(shù)方程,再聯(lián)立將B點代入即可求出一次函數(shù)方程.(2)令PA=PB,求出P.令

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論