2024屆南京市秦淮區(qū)四校~初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
2024屆南京市秦淮區(qū)四校~初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
2024屆南京市秦淮區(qū)四校~初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
2024屆南京市秦淮區(qū)四校~初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
2024屆南京市秦淮區(qū)四校~初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆南京市秦淮區(qū)四校~初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.對于有理數(shù)x、y定義一種運算“Δ”:xΔy=ax+by+c,其中a、b、c為常數(shù),等式右邊是通常的加法與乘法運算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.112.如圖,在直角坐標系中,等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+23.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:14.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°5.下列說法正確的是()A.2a2b與–2b2a的和為0B.的系數(shù)是,次數(shù)是4次C.2x2y–3y2–1是3次3項式D.x2y3與–是同類項6.某商品價格為元,降價10%后,又降價10%,因銷售量猛增,商店決定再提價20%,提價后這種商品的價格為()A.0.96元 B.0.972元 C.1.08元 D.元7.已知常數(shù)k<0,b>0,則函數(shù)y=kx+b,的圖象大致是下圖中的()A. B.C. D.8.一元二次方程x2﹣3x+1=0的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.以上答案都不對9.關于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形10.函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣211.如圖,下列各數(shù)中,數(shù)軸上點A表示的可能是()A.4的算術平方根 B.4的立方根 C.8的算術平方根 D.8的立方根12.將一副三角板(∠A=30°)按如圖所示方式擺放,使得AB∥EF,則∠1等于()A.75° B.90° C.105° D.115°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知∠A+∠C=180°,∠APM=118°,則∠CQN=_____°.14.輪船沿江從A港順流行駛到B港,比從B港返回A港少用3h,若靜水時船速為26km/h,水速為2km/h,則A港和B港相距_____km.15.如圖所示,在四邊形ABCD中,AD⊥AB,∠C=110°,它的一個外角∠ADE=60°,則∠B的大小是_____.16.利用1個a×a的正方形,1個b×b的正方形和2個a×b的矩形可拼成一個正方形(如圖所示),從而可得到因式分解的公式________.17.分解因式:2x2-8x+8=__________.18.如圖所示,邊長為1的小正方形構成的網格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正切值等于__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)我們常用的數(shù)是十進制數(shù),如,數(shù)要用10個數(shù)碼(又叫數(shù)字):0、1、2、3、4、5、6、7、8、9,在電子計算機中用的二進制,只要兩個數(shù)碼:0和1,如二進制中等于十進制的數(shù)6,等于十進制的數(shù)53.那么二進制中的數(shù)101011等于十進制中的哪個數(shù)?20.(6分)某廠按用戶的月需求量(件)完成一種產品的生產,其中.每件的售價為18萬元,每件的成本(萬元)是基礎價與浮動價的和,其中基礎價保持不變,浮動價與月需求量(件)成反比.經市場調研發(fā)現(xiàn),月需求量與月份(為整數(shù),)符合關系式(為常數(shù)),且得到了表中的數(shù)據(jù).月份(月)

1

2

成本(萬元/件)

11

12

需求量(件/月)

120

100

(1)求與滿足的關系式,請說明一件產品的利潤能否是12萬元;(2)求,并推斷是否存在某個月既無盈利也不虧損;(3)在這一年12個月中,若第個月和第個月的利潤相差最大,求.21.(6分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點,CP切⊙O于P,弦PD⊥AB于E,過點B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點,∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點M,求QM的長.22.(8分)直線y1=kx+b與反比例函數(shù)的圖象分別交于點A(m,4)和點B(n,2),與坐標軸分別交于點C和點D.(1)求直線AB的解析式;(2)根據(jù)圖象寫出不等式kx+b﹣≤0的解集;(3)若點P是x軸上一動點,當△COD與△ADP相似時,求點P的坐標.23.(8分)某中學為了解八年級學習體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A、B、C、D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調查共抽取了多少名學生?(2)求測試結果為C等級的學生數(shù),并補全條形圖;(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名.24.(10分)已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF.的長為多少;求AE的長;在BE上是否存在點P,使得的值最小?若存在,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.25.(10分)為了了解某校學生對以下四個電視節(jié)目:A《最強大腦》,B《中國詩詞大會》,C《朗讀者》,D《出彩中國人》的喜愛情況,隨機抽取了部分學生進行調查,要求每名學生選出并且只能選出一個自己最喜愛的節(jié)目,根據(jù)調查結果,繪制了如下兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中所提供的信息,完成下列問題:本次調查的學生人數(shù)為________;在扇形統(tǒng)計圖中,A部分所占圓心角的度數(shù)為________;請將條形統(tǒng)計圖補充完整:若該校共有3000名學生,估計該校最喜愛《中國詩詞大會》的學生有多少名?26.(12分)在平面直角坐標系xOy中,拋物線,與x軸交于點C,點C在點D的左側,與y軸交于點A.求拋物線頂點M的坐標;若點A的坐標為,軸,交拋物線于點B,求點B的坐標;在的條件下,將拋物線在B,C兩點之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個交點,結合函數(shù)的圖象,求m的取值范圍.27.(12分)計算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

先由運算的定義,寫出3△5=25,4△7=28,得到關于a、b、c的方程組,用含c的代數(shù)式表示出a、b.代入2△2求出值.【詳解】由規(guī)定的運算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.【點睛】本題考查了新運算、三元一次方程組的解法.解決本題的關鍵是根據(jù)新運算的意義,正確的寫出3△5=25,4△7=28,2△2.2、D【解析】

抓住兩個特殊位置:當BC與x軸平行時,求出D的坐標;C與原點重合時,D在y軸上,求出此時D的坐標,設所求直線解析式為y=kx+b,將兩位置D坐標代入得到關于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【詳解】當BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點G,如圖1所示.∵等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標為(﹣1,3);當C與原點O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設所求直線解析式為y=kx+b(k≠0),將兩點坐標代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.【點睛】本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定一次函數(shù)解析式,等腰直角三角形的性質,坐標與圖形性質,熟練運用待定系數(shù)法是解答本題的關鍵.3、B【解析】

可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.4、D【解析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.5、C【解析】

根據(jù)多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義逐一判斷可得.【詳解】A、2a2b與-2b2a不是同類項,不能合并,此選項錯誤;B、πa2b的系數(shù)是π,次數(shù)是3次,此選項錯誤;C、2x2y-3y2-1是3次3項式,此選項正確;D、x2y3與﹣相同字母的次數(shù)不同,不是同類項,此選項錯誤;故選C.【點睛】本題主要考查多項式、單項式、同類項,解題的關鍵是掌握多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義.6、B【解析】

提價后這種商品的價格=原價×(1-降低的百分比)(1-百分比)×(1+增長的百分比),把相關數(shù)值代入求值即可.【詳解】第一次降價后的價格為a×(1-10%)=0.9a元,第二次降價后的價格為0.9a×(1-10%)=0.81a元,∴提價20%的價格為0.81a×(1+20%)=0.972a元,故選B.【點睛】本題考查函數(shù)模型的選擇與應用,考查列代數(shù)式,得到第二次降價后的價格是解決本題的突破點;得到提價后這種商品的價格的等量關系是解決本題的關鍵.7、D【解析】

當k<0,b>0時,直線經過一、二、四象限,雙曲線在二、四象限,由此確定正確的選項.【詳解】解:∵當k<0,b>0時,直線與y軸交于正半軸,且y隨x的增大而減小,∴直線經過一、二、四象限,雙曲線在二、四象限.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象與性質.關鍵是明確系數(shù)與圖象的位置的聯(lián)系.8、B【解析】

首先確定a=1,b=-3,c=1,然后求出△=b2-4ac的值,進而作出判斷.【詳解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0兩個不相等的實數(shù)根;故選B.【點睛】此題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù);(3)△<0?方程沒有實數(shù)根.9、B【解析】

由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結論.【詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.【點睛】本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關鍵.10、C【解析】

根據(jù)函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數(shù)與x軸有一個交點,當m≠0時,函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關鍵是明確題意,利用分類討論的數(shù)學思想解答.11、C【解析】

解:由題意可知4的算術平方根是2,4的立方根是<2,8的算術平方根是,2<<3,8的立方根是2,

故根據(jù)數(shù)軸可知,

故選C12、C【解析】分析:依據(jù)AB∥EF,即可得∠BDE=∠E=45°,再根據(jù)∠A=30°,可得∠B=60°,利用三角形外角性質,即可得到∠1=∠BDE+∠B=105°.詳解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故選C.點睛:本題主要考查了平行線的性質,解題時注意:兩直線平行,內錯角相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

先根據(jù)同旁內角互補兩直線平行知AB∥CD,據(jù)此依據(jù)平行線性質知∠APM=∠CQM=118°,由鄰補角定義可得答案.【詳解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案為:1.【點睛】本題主要考查平行線的判定與性質,解題的關鍵是掌握平行線的判定是由角的數(shù)量關系判斷兩直線的位置關系.平行線的性質是由平行關系來尋找角的數(shù)量關系.14、1.【解析】

根據(jù)逆流速度=靜水速度-水流速度,順流速度=靜水速度+水流速度,表示出逆流速度與順流速度,根據(jù)題意列出方程,求出方程的解問題可解.【詳解】解:設A港與B港相距xkm,

根據(jù)題意得:,

解得:x=1,

則A港與B港相距1km.

故答案為:1.【點睛】此題考查了分式方程的應用題,解答關鍵是在順流、逆流過程中找出等量關系構造方程.15、40°【解析】【分析】根據(jù)外角的概念求出∠ADC的度數(shù),再根據(jù)垂直的定義、四邊形的內角和等于360°進行求解即可得.【詳解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案為40°.【點睛】本題考查了多邊形的內角和外角,掌握四邊形的內角和等于360°、外角的概念是解題的關鍵.16、a1+1ab+b1=(a+b)1【解析】試題分析:兩個正方形的面積分別為a1,b1,兩個長方形的面積都為ab,組成的正方形的邊長為a+b,面積為(a+b)1,所以a1+1ab+b1=(a+b)1.點睛:本題考查了運用完全平方公式分解因式,關鍵是理解題中給出的各個圖形之間的面積關系.17、2(x-2)2【解析】

先運用提公因式法,再運用完全平方公式.【詳解】:2x2-8x+8=.故答案為2(x-2)2.【點睛】本題考核知識點:因式分解.解題關鍵點:熟練掌握分解因式的基本方法.18、【解析】

根據(jù)同弧或等弧所對的圓周角相等來求解.【詳解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故選D.【點睛】本題利用了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念求解.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1.【解析】分析:利用新定義得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根據(jù)乘方的定義進行計算.詳解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1,所以二進制中的數(shù)101011等于十進制中的1.點睛:本題考查了有理數(shù)的乘方:有理數(shù)乘方的定義:求n個相同因數(shù)積的運算,叫做乘方.20、(1),不可能;(2)不存在;(3)1或11.【解析】試題分析:(1)根據(jù)每件的成本y(萬元)是基礎價與浮動價的和,其中基礎價保持不變,浮動價與月需求量x(件)成反比,結合表格,用待定系數(shù)法求y與x之間的函數(shù)關系式,再列方程求解,檢驗所得結果是還符合題意;(2)將表格中的n,對應的x值,代入到,求出k,根據(jù)某個月既無盈利也不虧損,得到一個關于n的一元二次方程,判斷根的情況;(3)用含m的代數(shù)式表示出第m個月,第(m+1)個月的利潤,再對它們的差的情況討論.試題解析:(1)由題意設,由表中數(shù)據(jù),得解得∴.由題意,若,則.∵x>0,∴.∴不可能.(2)將n=1,x=120代入,得120=2-2k+9k+27.解得k=13.將n=2,x=100代入也符合.∴k=13.由題意,得18=6+,求得x=50.∴50=,即.∵,∴方程無實數(shù)根.∴不存在.(3)第m個月的利潤為w==;∴第(m+1)個月的利潤為W′=.若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.∴m=1或11.考點:待定系數(shù)法,一元二次方程根的判別式,二次函數(shù)的性質,二次函數(shù)的應用.21、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結合BQ⊥CP于點Q,PE⊥AB于點E即可由角平分線的性質得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過點O作OK⊥HB于點K,結合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過點G作GN⊥QB交QB的延長線于點N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點P,又∵BQ⊥CP于點Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過點O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過點G作GN⊥QB交QB的延長線于點N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點睛:解本題第3小題的要點是:(1)作出如圖所示的輔助線,結合已知條件和(2)先求得BQ、BG的長及∠CBQ=∠ABG=60°;(2)再過點G作GN⊥QB并交QB的延長線于點N,解出BN和GN的長,這樣即可在Rt△QGN中求得QG的長,最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長了.22、(1)y=﹣x+6;(2)0<x<2或x>4;(3)點P的坐標為(2,0)或(﹣3,0).【解析】

(1)將點坐標代入雙曲線中即可求出,最后將點坐標代入直線解析式中即可得出結論;(2)根據(jù)點坐標和圖象即可得出結論;(3)先求出點坐標,進而求出,設出點P坐標,最后分兩種情況利用相似三角形得出比例式建立方程求解即可得出結論.【詳解】解:(1)∵點和點在反比例函數(shù)的圖象上,,解得,即把兩點代入中得,解得:,所以直線的解析式為:;(2)由圖象可得,當時,的解集為或.(3)由(1)得直線的解析式為,當時,y=6,,,當時,,∴點坐標為.設P點坐標為,由題可以,點在點左側,則由可得①當時,,,解得,故點P坐標為②當時,,,解得,即點P的坐標為因此,點P的坐標為或時,與相似.【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,相似三角形的性質,用方程的思想和分類討論的思想解決問題是解本題的關鍵.23、(1)50名;(2)16名;見解析;(3)56名.【解析】試題分析:根據(jù)A等級的人數(shù)和百分比求出總人數(shù);根據(jù)總人數(shù)和A、B、D三個等級的人數(shù)求出C等級的人數(shù);利用總人數(shù)乘以D等級人數(shù)的百分比得出答案.試題解析:(1)10÷20%=50(名)答:本次抽樣共抽取了50名學生.(2)50-10-20-4=16(名)答:測試結果為C等級的學生有16名.補全圖形如圖所示:(3)700×(4÷50)=56(名)答:估計該中學八年級700名學生中體能測試為D等級的學生有56名.考點:統(tǒng)計圖.24、(1);(2)的長為;(1)存在,畫出點P的位置如圖1見解析,的最小值為

.【解析】

(1)根據(jù)勾股定理解答即可;(2)設AE=x,根據(jù)全等三角形的性質和勾股定理解答即可;(1)延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,利用相似三角形的判定和性質解答即可.【詳解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案為5;(2)設AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據(jù)折疊的性質知:Rt△FDE≌Rt△ADE,∴FE=AE=x,F(xiàn)D=AD=BC=1,∴BF=BD﹣F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論