同構(gòu)思想在解析幾何的應(yīng)用(解析版)_第1頁
同構(gòu)思想在解析幾何的應(yīng)用(解析版)_第2頁
同構(gòu)思想在解析幾何的應(yīng)用(解析版)_第3頁
同構(gòu)思想在解析幾何的應(yīng)用(解析版)_第4頁
同構(gòu)思想在解析幾何的應(yīng)用(解析版)_第5頁
已閱讀5頁,還剩71頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

①若實(shí)數(shù)a,b分別滿足f(a)=0,f(b)=0,由此a,b可視為方程f(x)=0的兩個(gè)根.--雙切線、斜率和(積)為②如果A(x1,y1),B(x2,y2)滿足的方程結(jié)構(gòu)相同,則A,B為方程所表示的--切點(diǎn)弦方程推導(dǎo)的核心思路.(1)+y2=1(2)設(shè)點(diǎn)A(x1,y1(,B(x,y(,C(x3,y3(,D(x4,y4(,2y1-x1y2=y2-y1,直線CD的方程為y--=x-,(2x1-3((y4-y3(令y=0得,x=-y1(x4-x3(+((2x1-3((y4-y3(=-y1-+(3x1-4(-(2x1-3(-==-y1(3x2-4(+y2(3x1-4(4(y1-y2(+3(x1y==2x1-3(-y1(2x2-3(3(y1-y2(+2(x1y2-x2y1(5,(3)求證直線過定點(diǎn)(x0,y0(,常利用直線的點(diǎn)斜式方程y-y0=k(x-x0(或截距式y(tǒng)=kx+b來證明.上,圓E:(x-2)2+y2=r2(其中0<r<1).(1)若r=,Q為圓E上的動(dòng)點(diǎn),求線段PQ長(zhǎng)度的(2)設(shè)D(1,t(是拋物線C1上位于第一象限的一點(diǎn),過D作圓E的兩條切N.證明:直線MN經(jīng)過定點(diǎn).(2)根據(jù)兩點(diǎn)坐標(biāo)可得直線MN,DM的直線方程,由直線與圓相切可得a,b是方程(r2-1(x2+(2r2-4(x+設(shè)點(diǎn)P(t2,t(,則|PQ|≥|PE|-=(t2-2(2+t2-=(t2-2+-≥,(2)∵D(1,t(是拋物線C1上位于第一象限的點(diǎn),設(shè)M(a2,a(,N(b2,b(,則:直線MN:y-a=(x-a2(,即y-a=(x-a2(,即x-(a+b(y+ab=0.直線DM:y-1=(x-1(,即x-(a+1(y+a=0.由直線DM與圓相切得=r,即(r2-1(a2+(2r2-4(a+(2r2-4(=0.同理,由直線DN與圓相切得(r2-1(b2+(2r2-4(b+(2r2-4(=0.所以a,b是方程(r2-1(x2+(2r2-4(x+(2r2-4(=0的兩個(gè)解,代入方程x-(a+b(y+ab=0得(x+2y+2(r2+(-x-4y-4(=0,∴直線MN恒過定點(diǎn)(0,-1(.找到定點(diǎn).技巧:若直線方程為y-y0=k(x-x0(,則直線過定點(diǎn)(x0,y0(;若直線方程為y=kx+b(b為定值),則直(3)過點(diǎn)A的且斜率存在的直線l1,l2分別與橢圓交于點(diǎn)P,Q(均異于點(diǎn)A),若點(diǎn)B到直線l1,l2的距離相(3)直線PQ過定點(diǎn)(-6,-3(,證明見解析可得c2=a2-b2=3,又A(-2,1(為橢圓上一點(diǎn),43+b2643+b262所以橢圓E的方程為+22y32y313-2<k<13-2<k<-2-3此時(shí)直線l的方程為y-1=-(x+2(,即x+y+1=0;直線l1:y-1=k1(x+2(,l2:y-1=k2(x+2(,(1+2k(x2+(8k+4k1(x+8k+8k1-4=0,可得直線PQ的方程為化簡(jiǎn)得(2-k1+2k(y-9k1=(k1+1+k(x,所以(2y-x((1+k(+k1(-y-x-9(=0,由解得,可得直線PQ過定點(diǎn)(-6,-3(.4.如圖,在平面直角坐標(biāo)系xOy中,雙曲線=1(a>0,b>0(的上下焦點(diǎn)分別為F1(0,c(,F(xiàn)(2)設(shè)A,B是雙曲線上位于y軸右方的-x2=1(1)將點(diǎn)的坐標(biāo)代入雙曲線的方程求解即可;將點(diǎn)(0,和代入雙曲線方程得:雙曲線的方程為-x2=1.(2)(i)設(shè)A(x1,y1(,B(x2,y2(,B關(guān)于原點(diǎn)對(duì)稱點(diǎn)記為C(x3,y3(,則x3=-x2,y3=-y2.又因?yàn)锳F1kFA=kBFFA=kCF,故A,F1,C三點(diǎn)共線.-|BF2|=|AF1|-|CF1|=2.直線AF1與雙曲線上支有兩個(gè)交點(diǎn),所以Δ>0,x1x3=解得|k|<.4+7k2-4=0,且由圖可知k>0,即(2k2-1((k2+4(=0, =2=22+=22=22++ + 12k2-4\(k2-2(2k2-2 |k2-2|1\(k2-2(2k2-2 |k2-2|111+k21++得解.25.已知雙曲線C:x2-y2=1(a>0,b>0(的離心率為2,點(diǎn)(3,-1(在雙曲線C上.過C的左焦點(diǎn)2(3)點(diǎn)P(-4,2(,直線AP交直線x=-2值.x2-x2-y22=x2-y22=1.(2)雙曲線C的左焦點(diǎn)為F(-4,0(,-1(y2-8my+8=0,顯然m2-1≠0,Δ=64m2-32(m2-1)=32(m2+1)>0,設(shè)A(x1,y1(,B(x2,y2(,則y1+y2=,y1y2=<0,得-1<m<1,于是M=(x1+2,y1(,M=(x2+2,y2(,M?M=(x2+2((x1+2(+y1y2=(my1-2((my2-2(+y1y2即MA?MB≠0,因此MA與MB不垂直,所以不存在直線l,使得點(diǎn)M在以AB為直徑的圓上.(3)由直線AP:y-2=k1(x+4(,得Q(-2,2+2k1),=-2my2-2y1+4+2my1+2mk1y1my1(my2-2(,1my1=y1-2,且y1+y2=my1y2,①求證:∠AQP=∠BQP;2=4x2=2px(p>0),由a2-b2=4-3=1,得c=1.由此能求出拋物線D的方(2)①設(shè)A(x1,y1(,B(x,y(,由于O為PQ中點(diǎn),則Q(-4,0(,故當(dāng)l⊥x軸時(shí)由拋物線的對(duì)稱性知∠AQP=∠AQP=∠BQP. ∴拋物線D的方程為y2=4x;(2)①設(shè)A(x1,y1(,B(x,y(,由于O為PQ中點(diǎn)且P(4,0(,則Q(-4,0(,當(dāng)l不垂直x軸時(shí),顯然直線l的斜率不為0,設(shè)l:y=k(x-4((k≠0(,x1+x2x1+4x2+4(x1+4((x2+4(,所以kAQ+kBQ=k(x1-4(+k(x2x1+4x2+4(x1+4((x2+4(,則∠AQP=∠BQP,②設(shè)存在直線m:x=t滿足題意,設(shè)圓心M,,過M作直線x=t的垂線,垂足為E,圓M與直線m的一個(gè)交點(diǎn)為G,2-|ME|2,即|EG|2=|MA|2-|ME|2=-t(2=y++t(x1+4(-t2=x1-4x1+t(x1+4)-t2=(t-3(x1+4t-t2,此時(shí)直線m被以AP為直徑的圓截得的弦長(zhǎng)恒為定值2(5)代入韋達(dá)定理求解.于M,直線PB交y軸于N.(1)(-∞,-3(∪(-3,0(∪(0,1((2)-1若直線l與拋物線的一個(gè)交點(diǎn)為(1,-2),此時(shí)該點(diǎn)與點(diǎn)P所在的直線此時(shí)=-3,所以直線l斜率k≠-3.故直線l的斜率k的取值范圍是k∈(-∞,1)且k≠-3且k≠0.即率k的取值范圍是(-∞,-3(∪(-3,0(∪(0,1(.則y1+y2=4m,y1y2=-4,∵D=λA,D=μB,∴λ=-1-,μ=-1-,∴λ+μ+=-2-∴λ+μ=-1.m-1=-λ,故λ=1-ym,由Q=μQ得μ=1-yn,設(shè)A(x1,y1(,B(x,y(,直線PA方程為y-2=m=由直線PB可得yn=,(5)代入韋達(dá)定理求解.F(2)過點(diǎn)P(0,2、3(的直線l交C于M、N兩點(diǎn)(M位于P與N之間),記△PMB1、△PNB1的面積分別為(1)+=1(2),設(shè)M(x1,y1(,N(x,y(,3μ|x2|(5)代入韋達(dá)定理求解.AB的距離為|OB|(O為坐標(biāo)原點(diǎn)).(2)若橢圓則稱橢圓E為橢圓C的λ倍相似橢圓.已知橢圓E是橢圓C(2)證明見解析.(1)∵A(-a,0(,B(0,b(,∴F1(-1,0)到直線AB的距離為d==b,2=7(a-1)2,2=a2-12)3)4),(8km)2-4(3+4k2)(4m2-12)=48(4k2+3-m2)>0,(*)∴|x1-x2|=(x1+x2)2-4x1x2=43(4k2+32-m2)將y=kx+m代入橢圓E的方程得(3+4k2)x2+8kmx+4m2-36=0,x3-x4|=由MQ+PQ=2NQ可得NM=PN,∴|MQ|=3|PN|,所以|x3-x4|=3|x1-x2|,2-42=1(1)+=1R代入x=r到+=1,不妨設(shè)C(r,、16-r2(,設(shè)E為AC與圓O的切則由切線的性質(zhì),CE=CF=16-r2,OE=OF=r,故AE=AO2-OE2=16-r2,故AC=AE+(3)設(shè)圓O的切線方程為y-2=k(x-22(,即kx-y+2-22k=0.聯(lián)立(x-2(,則(1+4k2(x2+82k(1-2k(x+8(4k2-4k-1(=0.設(shè)Q(x1,y1(,R(x2,y2(,則22x1=8(4k-4k1-1(,即x1=22(4k-4k1-1(=-8-2x2=1-y2=k1(x1-22(-k2(x2-22(=k1x1-k2x2-22(k1-k2(=.又kQR=故直線QR的方程為y-y1=(x-x1(,即(y1-y2(x-(x1-x2(y+x1y2-x2y1=0,故O到直線QR的距離d=|x1y2-x2y1|=(y1-y2(2+(x1-x2(2 |x1[k2(x2-22(+2[-x2[k1(x1-22(+2[|(y1-y2(2+(x1-x2(2= |(k2-k1(x1x2+2、2(x2k1-x1k2(+、2(x1-x2(|(y1-y2(2+(x1-x2(2=2|PF|.(2)過曲線C上的點(diǎn)M(x0,y0((x0≥1(作圓(x+1(2+y2=1的兩條切線,切線與y軸交于A,B,求△MAB面積的取值范圍.(2)設(shè)切線方程y-y0=k(x-x0(,通過點(diǎn)到切線的距離,化簡(jiǎn)成k|PQ|=2|PF|,得|x+4|=2、(x+1(2+y2,兩邊平方得+=1,2+=1;(2)設(shè)點(diǎn)M(x0,y0(的切線方程為y-y0=k(x-x0((斜率必存在),圓心為F(-1,0(,r=1所以F(-1,0(到y(tǒng)-y0=k(x-x0(的距離為:d=|-k+y0-kx0|=11+k2平方化為(x+2x0(k2-2(x0+1(y0k+y-1=0,設(shè)PA,PB的斜率分別為k1,k2x+2x0,12x+2x0則k1+k2=2(x0+x+2x0,12x+2x0因?yàn)镻A:y-y0=k1(x-x0(,令x=0有yA=y0-k1x0,同理yB=y0-k2x0所以|AB|=|yA-yB|=x0|k1-k2|=x0(k1+k2(2-4k1k2=又因?yàn)?y=12-3x代入上式化簡(jiǎn)為|AB|=令f(x(=,x∈[1,2[,求導(dǎo)知f(x(在x∈[1,2[為增函數(shù),所以S∈,2.x-1)2+(y+1)2=和拋物線C2:x2=4y,P(x0,y0(是圓C1上一點(diǎn),M是拋物線C2上一2(1)M,或M,;(2)證明見解析.(1)焦點(diǎn)F坐標(biāo)為,設(shè)M(xM,利用圓的切線長(zhǎng)公式、拋物線的定義建立方程求解即得;線AB方程并化簡(jiǎn)整理為x-y0,利用已知面積得到x-4y0=3,與(x0-1(2+(y0+1(2=聯(lián)立得(x0-1((x+x+19x0-13(=0,然后利用零點(diǎn)存在定理判定解的個(gè)數(shù)即可.(1)焦點(diǎn)F坐標(biāo)為,設(shè)M(xM,(,則|PM|=所以xM=或xM=,所以M,或M,,(2)設(shè)P(x0,y0(,則(x0-1(2+(y0+1(2=,設(shè)直線PA方程為y-y0=k1(x-x0(,代入x2=4y,得x2-4k1x-4(y0-k1x0(=0,Δ=16k+16(y0-k1x0(=0,整理得k-k1x0+y0=0①,同理,直線PB方程為y-y0=k2(x-x0(,有k-k2x0+y0=0②,,k2是方程k2-kx0+y0=0的兩根,2-4k1x-4(y0-k1x0(=0中,xA+xA=4k1,則xA=2k1所以A(2k1,k(,同理B(2k2,(,kAB=直線AB方程為y-k=(x-2k1(即y=x-k1k2即y=x-y0|AB|=1+|2k1-2k2|=、4+x?(k1+k2(2-4k1k2=、4+x?、x-4y0所以x-4y0=3,與(x0-1(2+(y0+1(2=聯(lián)立得(x0-1((x+x+19x0-13(=0長(zhǎng)和拋物線的定義建立方程求解是第一問中的關(guān)鍵;第二問中關(guān)鍵點(diǎn)由同構(gòu)方程k-k1x0+y0=0,k-k2x0+y0=0,知k1,k2是方程k2-kx0+y0=0的兩根,從而得到k1+k2=x0,k1k2=y0;利用零點(diǎn)存在定理判定三次函數(shù)在給定區(qū)間上的零點(diǎn)個(gè)數(shù)問題.【解析】(1)將y=代入C:x2=2py(p>0(中得x=±、p,2=2yy0=x0-2,設(shè)M(x1,y1(,N(x2,y2(,則直線GM,GN的方程分別為y-y1=x1(x-x1(,y-y2=x2(x-x2(,而直線MN的方程為y-y1=(x-x1(=(x-x1(,即+y1=x0x-y0-+y1=x0x-y0=x0x-x0+2=x0(x-1(+2,則直線MN過定點(diǎn)(1,2);設(shè)直線PQ:y=kx+(k≠0(,P(x3,y3(,Q(x4,y4(,聯(lián)立得,得x2-2kx-1=0,則x3+x4=2k,x3x4=-1,聯(lián)立{,解得H(k,-,故kFH?kPQ=-1,即PQ⊥FH,由P=λF,得x3=-λx4,結(jié)合根與系數(shù)的關(guān)系可知x4=-,-2=-1,△HPQ=|PQ|?|HF|=(1+k2,由于-2(在λ∈時(shí)為增函數(shù),|PD||PE|=|AD||BE|.(1)x2=4y(1)設(shè)A(x1,y1(,B(x,y((x1<0<x2(,直線方程聯(lián)立拋物線方程,利用韋達(dá)定理表示y1+y2,y1y2,結(jié)合算即可證明.(1)設(shè)A(x1,y1(,B(x,y(,(x1<0<x2(,2I=PB=,則直線PA方程為y-y1=(x-x1),即x1x=2(y+y1(,同理直線PB方程為x2x=2(y+y2(.-x2(=2(y1-y2(,兩式相加得2y=(x1+x2(-(y1+y2(=(y1-1+y2-1(-(y1+y2(=-2,即y=-1,所以點(diǎn)P(2,-1(.設(shè)直線DE與拋物線相切于點(diǎn)T(x0,y0(,則直線DE方程為xx0=2(y+y0(.因?yàn)閨PD||PE|=1+|yD-yP|?1+|yE-yP|=1+1+(yD+1((yE+1(,故要證|PD||PE|=|AD||BE|,即證yDyE+yD+yE+1=y1y2-y2yD-y1yE+yDyE,即證yD+yE+yDy2+y1yE=0,即證4x0(x1+x2(+x0x1x2(x1+x2(=0,4+x1x2((x1+x2(=0,1x2<0故|PD||PE|=|AD||BE|.:y=kx+m(k≠±2(與C有唯一的公共點(diǎn)M,過M且與l1垂直的直線分別交x軸,y軸于點(diǎn)A(x,0(,B(0,y(兩點(diǎn),當(dāng)M運(yùn)動(dòng)時(shí),求點(diǎn)D(x,y(的軌跡方程;唯一的公共點(diǎn)M,過M且與l1垂直的直線分別交x軸,y軸于點(diǎn)A(x,0(,B(0,y(兩點(diǎn),即可求解;(1)聯(lián)立方程,得(4-k2(x2-2kmx-m2-16=0(k≠±2(,與C有唯一的公共點(diǎn)M,所以Δ=(-2km(2-4(4-k2((-m2-16(=0,過M且與l1垂直的直線為(,則x=-20×,y=-,即-=1(y≠0(,所以D的軌跡方程為=1(y≠0(.2:x=ty-、3,3ty-1=0,Δ=16t2+16>0,23t-13ty-1=0,Δ=16t2+16>0,23t-1t2+4,y1y2=t2+4,設(shè)P(x1,y1(,Q(xt2+4,y1y2=t2+4,|PQ|=1+t2|y1-y2|=1+t2(y1+y2(2-4y1y2(t2+4(2=1+t2+4=4(t2+(t2+4(2=1+t2-x1-x2橢圓在x軸上方對(duì)應(yīng)方程為y=1-2,y-x1-x244x1則點(diǎn)P處切線斜率為=-x4-x14x1則點(diǎn)P處切線斜率為=-x4x1x4(x-x1(,即x1x4(x-x1(,即+y1y=1,4同理可得點(diǎn)Q處的切線方程為x2x+y2y=1,4x1x4x2x4由(4(y2-y1(x1x4x2x4由(4(y2-y1(x1y2-x2y1+y1y=1①,+y2y=1②,得xN===-(ty1-3(y2-(ty2-3((ty1-、3(ty1-y11+3、3(ty1-y11+3x11+=3代入①得yN==y133,-t(,而P=(x2-x1,y2-y1(=((ty2-3(-(ty1-3(,y2-y1(=(y2-y1((t,1(,=?|PQ|?|NF1|=??=?.所以f(m(在[1,+∞(上單調(diào)遞增,三角形面積最值.(2)設(shè)曲線O:x2+y2=1(x≠0(的切線l與橢圓C交于A,B兩點(diǎn),且以A,B為切點(diǎn)的橢圓C的切線交于0=±2及x0≠0,x0≠±2,根據(jù)直線與橢圓的位置關(guān)系結(jié)合判別式計(jì)算即可證明;合(1)得過A,B的橢圓切線方程,聯(lián)立兩切線方程求交點(diǎn)得M坐標(biāo)與A,B,P坐標(biāo)的關(guān)系,再結(jié)合點(diǎn)在圓上消元化簡(jiǎn)得xM=4x0,yM=y0,根據(jù)三角形面積S△ABM=PM|y1-y2|結(jié)合導(dǎo)數(shù)求其值域即可;法二、設(shè)AB:x=利用弦長(zhǎng)公式及點(diǎn)到直線的距離公式計(jì)算面積求范圍即可.0=0x2--1=0,Δ=-4+-1(==0,∴x+y0y=1與橢圓C只綜上,x+y0y=1是橢圓C在P(x0,y0(處的切線方程;若x0≠±1,可設(shè)l:y-y0=k(x-x0(,由直線與圓的位置關(guān)系知:kOP?k=-1?k=-,則l:y0y-y+x0x=x?x0x+y0y=1,0x+y0y=1,若x0=-1,顯然切線方程為x=-1,滿足x0x+y0y=1,故圓在切點(diǎn)P處的切線方程為x0x+y0y=1;0≠0,x0≠±1,設(shè)A(x1,y1(,B(x2,y2(,M(xM,yM(,x0x01-y2=y0(x2-x1(,x+y2y=x+y2y=1,x14x+y1y=1x2x+x14x+y1y=1x2x+(y1-y2(y=0,x+y2y=144∵x0≠0,x0≠±1,∴x1-x2≠0,得yy0,yM=x1y0,yM=x1x0+y1y0因?yàn)锳(x1,y1(,點(diǎn)在切線x0x+y0y=1上,所以x1x0+y1y0=1,得xM=4x0,yM=使用水平底鉛垂高計(jì)算△ABM的面積,鉛垂高為|y1-y2|=又(x1-x2(2=(x1+x2(2-4x1x2=即|y1-y2|= x3x+1 3x x3x+1 3x+1S△ABM=x0∵點(diǎn)P在圓O上,∴x0∈[-1,1[,由題意,x0≠0,(0<x<1(,fI(x(=3x2(2(0<x<1(,fI(x(=3x2(2+12(△ABM∈0,>0,f(0(=0,f(1(=33(3x+1(,代入橢圓C的方程得y=±y1-y2|=,代入橢圓C的方程得y=±y1-y2|=3,同理x0,同理x0=-1時(shí),S△ABM=33.(s.綜上S△ABM(s.法二、設(shè)直線AB:x=ty+m,t2+12=t2+1≥1.設(shè)A(x1,y1),B(x2,y2),M(x0,t2+1(t2+4)y2+2tmy+m2-4=0,t2+443?1+t2=t2+4.Δ=4t2m2-4(t2+4)(m2-4)=16(t2-m2+4)則|AB|=1+t2?(t2+443?1+t2=t2+4.x1x+y1y=1過點(diǎn)A的橢圓切線為x1x+y1y=1,過點(diǎn)x1x+y1y=1(x+y2y=1,4所以A,B的坐標(biāo)滿足直線x0x+y0y=4-則點(diǎn)P到直線AB的距離d=|+-m|=3,1+t2|m|1+t2所以S△MAB=|AB|d=|m|6(t24)=|m|+3),ΔMAB→0,1.(2024·遼寧·模擬預(yù)測(cè))已知雙曲線C:-=1(a>0,b>0(過點(diǎn)M(2,3(,離心率為2.MT的斜率之積為定值.2-=1【解析】(1)由雙曲線C:-=1(a>0,b>0)過點(diǎn)M(2,3(,則-=1,2=12=3,2-則M(2,3(平移到M1(0,0(,Q(-4,6(平移到Q1(-6,3(,S1(x1,y1(2-y2+(12x-6y((mx+ny(=0,則(6n+1(y2-(12n-6m(xy-(3+12m(x2=0,2-(12n-6m(-(3+12m(=0,則=kM1S1?kM1又直線S1T1過Q1(-6,3(,則-6m+3n=1,即6m=3n-1,2;2.(2024·云南·模擬預(yù)測(cè))拋物線Γ:y2=2px(p>0(的圖象經(jīng)過點(diǎn)M(1,-2(,焦點(diǎn)為F,過點(diǎn)F且傾斜角為(1)y2=4x(2)|AB|=(1)曲線y2=2px圖象經(jīng)過點(diǎn)M(1,-2(,所以(-2(2=2p,所以p=2,由|AB|=x1+x2+p=所以弦|AB|=.A(x1,y1(,B(x2,y2(,C(x3,y3(,D(x4,y4(,y2=-4.因此直線CD的方程為x=2m(y-y3(+x(3)求證直線過定點(diǎn)(x0,y0(,常利用直線的點(diǎn)斜式方程y-y0=k(x-x0(或截距式y(tǒng)=kx+b來證明.(2)設(shè)A,B是雙曲線上位于y軸右方的-x2=1(1)將點(diǎn)的坐標(biāo)代入雙曲線的方程求解即可;將點(diǎn)(0,(和(e,代入雙曲線方程得:雙曲線的方程為-x2=1.(2)(i)設(shè)A(x1,y1(,B(x2,y2(,B關(guān)于原點(diǎn)對(duì)稱點(diǎn)記為C(x3,y3(,則x3=-x2,y3=-y2.又因?yàn)锳F1kFA=kBFFA=kCF,故A,F1,C三點(diǎn)共線.-|BF2|=|AF1|-|CF1|=2.直線AF1與雙曲線上支有兩個(gè)交點(diǎn),所以Δ>0,x1x3=解得|k|<.|-|C|x1|-|x3|=(x1+x3(=,4+7k2-4=0,且由圖可知k>0,即(2k2-1((k2+4(=0, 11+=+==(k2-k2-211++得解.4.(2024·福建南平·模擬預(yù)測(cè))已知拋物線C:y2=2px(p>0(的準(zhǔn)線l與圓O:x2+y2=1相切.積的最小值.2=4x(2)設(shè)直線PA、PB的方程分別為y-y0=k1(x-x0(、y-y0=k2(x-x0(,可得S△PAB=(x1+1(2.(k1+k2(2-4k1k2(x0>1(,過點(diǎn)P的圓O的切線方程與圓相切可得(x-1(k2-2x0y0k+y-1=-所以C的方程為y2=4x;(2)由(1)知準(zhǔn)線l的方程為x=-1,設(shè)直線PA的方程為y-y0=k1(x-x0(,當(dāng)x=-1時(shí),yA=k1(-1-x0(+y0,設(shè)直線PB的方程為y-y0=k2(x-x0(,當(dāng)x=-1時(shí),yB=k2(-1-x0(+y0,由題意得S△PAB=|yA-yB|?(x0+1(=|k1-k2|?(x0+1(2=(x0+1(2.、(k1+k2(2-4k1k2(x0>1(,設(shè)過點(diǎn)P(x0,y0(的圓O的切線方程為y-y0=k(x-x0(,則|-x0k+y0|=1,化簡(jiǎn)得(x-1(k2-2x0y0k+y-1=0,k2+1Δ=4(x+y-1(=4(x+4x0-1(=4[(x0+2(2-5[>0(x0>1(,=-.x+y-1,令x0-1=t(t>0(,所以S△PAB≥、(4+6(×(4+4(=4、5,為P.表示斜率后求解即可得.【解析】(1)由M:+y2=1可得A(-2,0(,C(0,1(,則kAC=tan∠PAB=tan2∠CAB=2×=4,23故lAP:y=(x+2(,令(x+2(=,解得x=-2或x=-,當(dāng)x=-2時(shí),交點(diǎn)為點(diǎn)A,舍去,當(dāng)x=-時(shí),y=×(-+2(=,即P(-(,則kPC==-kAP,故∠PAB=∠PBA,PA=PB,則x=-為∠APB的角平分線,聯(lián)立lAC:y=x+1,有y=×(-+1=,則點(diǎn)(-,為△PAB內(nèi)心,+1(x+8kx=0,則xQ=-,則yQ=k?(-+1=,即Q(-,,+(2k+1(x=0,則xP=-=1-,則yP=k?(-+1=-k+,即P(1-,k-,則kAP=-=-k,故lAP:y=-k(x+2(,y=-k(x+2(4+y=12+1y=-k(x+2(4+y=1則由x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論