山東省濟南天橋區(qū)四校聯(lián)考2025屆初三下學期第二次(4月)月考數(shù)學試題含解析_第1頁
山東省濟南天橋區(qū)四校聯(lián)考2025屆初三下學期第二次(4月)月考數(shù)學試題含解析_第2頁
山東省濟南天橋區(qū)四校聯(lián)考2025屆初三下學期第二次(4月)月考數(shù)學試題含解析_第3頁
山東省濟南天橋區(qū)四校聯(lián)考2025屆初三下學期第二次(4月)月考數(shù)學試題含解析_第4頁
山東省濟南天橋區(qū)四校聯(lián)考2025屆初三下學期第二次(4月)月考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省濟南天橋區(qū)四校聯(lián)考2025屆初三下學期第二次(4月)月考數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC中,AB=5,BC=3,AC=4,以點C為圓心的圓與AB相切,則⊙C的半徑為()A.2.3 B.2.4 C.2.5 D.2.62.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.3.將二次函數(shù)的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應的函數(shù)表達式是()A. B.C. D.4.如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是()A.30° B.60° C.90° D.45°5.化簡的結果是()A.±4 B.4 C.2 D.±26.在﹣3,﹣1,0,1四個數(shù)中,比﹣2小的數(shù)是()A.﹣3 B.﹣1 C.0 D.17.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚8.下列調查中,最適合采用全面調查(普查)的是()A.對我市中學生每周課外閱讀時間情況的調查B.對我市市民知曉“禮讓行人”交通新規(guī)情況的調查C.對我市中學生觀看電影《厲害了,我的國》情況的調查D.對我國首艘國產航母002型各零部件質量情況的調查9.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.1610.如圖,在矩形AOBC中,O為坐標原點,OA、OB分別在x軸、y軸上,點B的坐標為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標為()A.(,) B.(2,) C.(,) D.(,3﹣)11.□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF12.下列運算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算:2tan14.對于任意非零實數(shù)a、b,定義運算“”,使下列式子成立:,,,,…,則ab=.15.圖甲是小明設計的帶菱形圖案的花邊作品,該作品由形如圖乙的矩形圖案拼接而成(不重疊,無縫隙).圖乙種,,EF=4cm,上下兩個陰影三角形的面積之和為54cm2,其內部菱形由兩組距離相等的平行線交叉得到,則該菱形的周長為___cm16.如圖,點A(3,n)在雙曲線y=上,過點A作AC⊥x軸,垂足為C.線段OA的垂直平分線交OC于點B,則△ABC周長的值是.17.如圖,四邊形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,設Q、R分別是AB、AD上的動點,則△CQR的周長的最小值為_________.18.如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m.水面下降2.5m,水面寬度增加_____m.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)立定跳遠是嘉興市體育中考的抽考項目之一,某校九年級(1),(2)班準備集體購買某品牌的立定跳遠訓練鞋.現(xiàn)了解到某網店正好有這種品牌訓練鞋的促銷活動,其購買的單價y(元/雙)與一次性購買的數(shù)量x(雙)之間滿足的函數(shù)關系如圖所示.當10≤x<60時,求y關于x的函數(shù)表達式;九(1),(2)班共購買此品牌鞋子100雙,由于某種原因需分兩次購買,且一次購買數(shù)量多于25雙且少于60雙;①若兩次購買鞋子共花費9200元,求第一次的購買數(shù)量;②如何規(guī)劃兩次購買的方案,使所花費用最少,最少多少元?20.(6分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,求證:AF=DC;若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.21.(6分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(–6,n),與x軸交于點C.(1)求一次函數(shù)y=kx+b的關系式;(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點P在x軸上,且S△ACP=,求點P的坐標.22.(8分)先化簡,再求值:(1﹣)÷,其中x=1.23.(8分)計算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣124.(10分)某汽車制造公司計劃生產A、B兩種新型汽車共40輛投放到市場銷售.已知A型汽車每輛成本34萬元,售價39萬元;B型汽車每輛成本42萬元,售價50萬元.若該公司對此項計劃的投資不低于1536萬元,不高于1552萬元.請解答下列問題:(1)該公司有哪幾種生產方案?(2)該公司按照哪種方案生產汽車,才能在這批汽車全部售出后,所獲利潤最大,最大利潤是多少?(3)在(2)的情況下,公司決定拿出利潤的2.5%全部用于生產甲乙兩種鋼板(兩種都生產),甲鋼板每噸5000元,乙鋼板每噸6000元,共有多少種生產方案?(直接寫出答案)25.(10分)某校在一次大課間活動中,采用了四種活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據調查統(tǒng)計結果,繪制了不完整的統(tǒng)計圖.請結合統(tǒng)計圖,回答下列問題:(1)本次調查學生共人,a=,并將條形圖補充完整;(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?(3)學校讓每班在A、B、C、D四種活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.26.(12分)4件同型號的產品中,有1件不合格品和3件合格品.從這4件產品中隨機抽取1件進行檢測,求抽到的是不合格品的概率;從這4件產品中隨機抽取2件進行檢測,求抽到的都是合格品的概率;在這4件產品中加入x件合格品后,進行如下試驗:隨機抽取1件進行檢測,然后放回,多次重復這個試驗,通過大量重復試驗后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,則可以推算出x的值大約是多少?27.(12分)如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.若∠AOD=52°,求∠DEB的度數(shù);若OC=3,OA=5,求AB的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如圖:設切點為D,連接CD,∵AB是⊙C的切線,∴CD⊥AB,∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,∴⊙C的半徑為,故選B.考點:圓的切線的性質;勾股定理.2、A【解析】

根據應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.3、B【解析】

拋物線平移不改變a的值,由拋物線的頂點坐標即可得出結果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),

可設新拋物線的解析式為:y=(x-h)1+k,

代入得:y=(x+1)1-1.

∴所得圖象的解析式為:y=(x+1)1-1;

故選:B.本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關鍵是得到新拋物線的頂點坐標.4、B【解析】【分析】欲求∠BOC,又已知一圓周角∠BAC,可利用圓周角與圓心角的關系求解.【詳解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所對的圓周角是圓心角的一半),故選B.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、B【解析】

根據算術平方根的意義求解即可.【詳解】4,故選:B.本題考查了算術平方根的意義,一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術平方根,正數(shù)a有一個正的算術平方根,0的算術平方根是0,負數(shù)沒有算術平方根.6、A【解析】

因為正數(shù)是比0大的數(shù),負數(shù)是比0小的數(shù),正數(shù)比負數(shù)大;負數(shù)的絕對值越大,本身就越小,根據有理數(shù)比較大小的法則即可選出答案.【詳解】因為正數(shù)是比0大的數(shù),負數(shù)是比0小的數(shù),正數(shù)比負數(shù)大;負數(shù)的絕對值越大,本身就越小,所以在-3,-1,0,1這四個數(shù)中比-2小的數(shù)是-3,故選A.本題主要考查有理數(shù)比較大小,解決本題的關鍵是要熟練掌握比較有理數(shù)大小的方法.7、B【解析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.8、D【解析】

由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.由此,對各選項進行辨析即可.【詳解】A、對我市中學生每周課外閱讀時間情況的調查,人數(shù)眾多,意義不大,應采用抽樣調查,故此選項錯誤;B、對我市市民知曉“禮讓行人”交通新規(guī)情況的調查,人數(shù)眾多,意義不大,應采用抽樣調查,故此選項錯誤;C、對我市中學生觀看電影《厲害了,我的國》情況的調查,人數(shù)眾多,意義不大,應采用抽樣調查,故此選項錯誤;D、對我國首艘國產航母002型各零部件質量情況的調查,意義重大,應采用普查,故此選項正確;故選D.本題考查了抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.9、B【解析】

根據矩形和折疊性質可得△EHC≌△FBC,從而可得BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據此得出GF=1,由EF2=EG2+GF2可得答案.【詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據折疊的性質,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.本題考查了折疊的性質、矩形的性質、三角形全等的判定與性質、勾股定理等,綜合性較強,熟練掌握各相關的性質定理與判定定理是解題的關鍵.10、A【解析】解:∵四邊形AOBC是矩形,∠ABO=10°,點B的坐標為(0,),∴AC=OB=,∠CAB=10°,∴BC=AC?tan10°=×=1.∵將△ABC沿AB所在直線對折后,點C落在點D處,∴∠BAD=10°,AD=.過點D作DM⊥x軸于點M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴點D的坐標為(,).故選A.11、B【解析】【分析】根據平行線的判定方法結合已知條件逐項進行分析即可得.【詳解】A、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四邊形AECF是平行四邊形,故不符合題意;B、如圖所示,AE=CF,不能得到四邊形AECF是平行四邊形,故符合題意;C、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四邊形AECF是平行四邊形,故不符合題意;D、如圖,∵四邊形ABCD是平行四邊形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四邊形AECF是平行四邊形,故不符合題意,故選B.【點睛】本題考查了平行四邊形的性質與判定,熟練掌握平行四邊形的判定定理與性質定理是解題的關鍵.12、A【解析】根據同底數(shù)冪的乘法,同底數(shù)冪的除法,合并同類項,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、x?x4=x5,原式計算正確,故本選項正確;B、x6÷x3=x3,原式計算錯誤,故本選項錯誤;C、3x2﹣x2=2x2,原式計算錯誤,故本選項錯誤;D、(2x2)3=8x,原式計算錯誤,故本選項錯誤.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3+3【解析】

本題涉及零指數(shù)冪、負指數(shù)冪、絕對值、特殊角的三角函數(shù)值4個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數(shù)的運算法則求得計算結果.【詳解】原式=2×3+2﹣3+1,=23+2﹣3+1,=3+3.本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)、絕對值等考點的運算14、【解析】試題分析:根據已知數(shù)字等式得出變化規(guī)律,即可得出答案:∵,,,,…,∴。15、【解析】試題分析:根據,EF=4可得:AB=和BC的長度,根據陰影部分的面積為54可得陰影部分三角形的高,然后根據菱形的性質可以求出小菱形的邊長為,則菱形的周長為:×4=.考點:菱形的性質.16、2.【解析】

先求出點A的坐標,根據點的坐標的定義得到OC=3,AC=2,再根據線段垂直平分線的性質可知AB=OB,由此推出△ABC的周長=OC+AC.【詳解】由點A(3,n)在雙曲線y=上得,n=2.∴A(3,2).∵線段OA的垂直平分線交OC于點B,∴OB=AB.則在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周長的值是2.17、【解析】

作C關于AB的對稱點G,關于AD的對稱點F,可得三角形CQR的周長=CQ+QR+CR=GQ+QR+RF≥GF.根據圓周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的長,從而求出△CQR的周長的最小值.【詳解】解:作C關于AB的對稱點G,關于AD的對稱點F,則三角形CQR的周長=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四點共圓,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周長的最小值為.本題考查了軸對稱問題,關鍵是根據軸對稱的性質和兩點之間線段最短解答.18、1.【解析】

根據已知建立平面直角坐標系,進而求出二次函數(shù)解析式,再通過把y=-1.5代入拋物線解析式得出水面寬度,即可得出答案【詳解】解:建立平面直角坐標系,設橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,

拋物線以y軸為對稱軸,且經過A,B兩點,OA和OB可求出為AB的一半1米,拋物線頂點C坐標為(0,1),

設頂點式y(tǒng)=ax1+1,把A點坐標(-1,0)代入得a=-0.5,

∴拋物線解析式為y=-0.5x1+1,

當水面下降1.5米,通過拋物線在圖上的觀察可轉化為:

當y=-1.5時,對應的拋物線上兩點之間的距離,也就是直線y=-1與拋物線相交的兩點之間的距離,

可以通過把y=-1.5代入拋物線解析式得出:

-1.5=-0.5x1+1,

解得:x=±3,

1×3-4=1,

所以水面下降1.5m,水面寬度增加1米.

故答案為1.本題考查了二次函數(shù)的應用,根據已知建立坐標系從而得出二次函數(shù)解析式是解決問題的關鍵,學會把實際問題轉化為二次函數(shù),利用二次函數(shù)的性質解決問題,屬于中考常考題型.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=150﹣x;(2)①第一批購買數(shù)量為30雙或40雙.②第一次買26雙,第二次買74雙最省錢,最少9144元.【解析】

(1)若購買x雙(10<x<1),每件的單價=140﹣(購買數(shù)量﹣10),依此可得y關于x的函數(shù)關系式;(2)①設第一批購買x雙,則第二批購買(100﹣x)雙,根據購買兩批鞋子一共花了9200元列出方程求解即可.分兩種情況考慮:當25<x≤40時,則1≤100﹣x<75;當40<x<1時,則40<100﹣x<1.②把兩次的花費與第一次購買的雙數(shù)用函數(shù)表示出來.【詳解】解:(1)購買x雙(10<x<1)時,y=140﹣(x﹣10)=150﹣x.故y關于x的函數(shù)關系式是y=150﹣x;(2)①設第一批購買x雙,則第二批購買(100﹣x)雙.當25<x≤40時,則1≤100﹣x<75,則x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;當40<x<1時,則40<100﹣x<1,則x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以無解;答:第一批購買數(shù)量為30雙或40雙.②設第一次購買x雙,則第二次購買(100﹣x)雙,設兩次花費w元.當25<x≤40時w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26時,w有最小值,最小值為9144元;當40<x<1時,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59時,w有最小值,最小值為9838元,綜上所述:第一次買26雙,第二次買74雙最省錢,最少9144元.考查了一元二次方程的應用,根據實際問題列一次函數(shù)關系式,解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程,再求解.20、(1)見解析(2)見解析【解析】

(1)根據AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據直角三角形斜邊上中線性質得出CD=AD,根據菱形的判定推出即可.【詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點,AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四邊形ADCF是菱形,證明如下:∵AF∥BC,AF=DC,∴四邊形ADCF是平行四邊形.∵AC⊥AB,AD是斜邊BC的中線,∴AD=DC.∴平行四邊形ADCF是菱形21、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】

(1)利用反比例函數(shù)圖象上點的坐標特征可求出點A、B的坐標,再利用待定系數(shù)法即可求出直線AB的解析式;(1)根據函數(shù)圖像判斷即可;(3)利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,設點P的坐標為(x,0),根據三角形的面積公式結合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出結論.【詳解】(1)∵點A(m,3),B(-6,n)在雙曲線y=上,∴m=1,n=-1,∴A(1,3),B(-6,-1).將(1,3),B(-6,-1)帶入y=kx+b,得:,解得,.∴直線的解析式為y=x+1.(1)由函數(shù)圖像可知,當kx+b>時,-6<x<0或1<x;(3)當y=x+1=0時,x=-4,∴點C(-4,0).設點P的坐標為(x,0),如圖,∵S△ACP=S△BOC,A(1,3),B(-6,-1),∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴點P的坐標為(-6,0)或(-1,0).本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次(反比例)函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)解析式以及三角形的面積,解題的關鍵是:(1)根據點的坐標利用待定系數(shù)法求出直線AB的解析式;(1)根據函數(shù)圖像判斷不等式取值范圍;(3)根據三角形的面積公式以及S△ACP=S△BOC,得出|x+4|=1.22、.【解析】

原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結果,把x的值代入計算即可求出值.【詳解】原式==當x=1時,原式=.本題考查了分式的化簡求值,熟練掌握運算法則是解答本題的關鍵.23、1【解析】

根據特殊角的三角函數(shù)值、零指數(shù)冪的運算法則、負整數(shù)指數(shù)冪的運算法則、絕對值的性質進行化簡,計算即可.【詳解】原式=1×+3﹣+1﹣1=1.此題主要考查了實數(shù)的運算,要熟練掌握,解答此題的關鍵是要明確:在進行實數(shù)運算時,和有理數(shù)運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進行.另外,有理數(shù)的運算律在實數(shù)范圍內仍然適用.24、(1)共有三種方案,分別為①A型號16輛時,B型號24輛;②A型號17輛時,B型號23輛;③A型號18輛時,B型號22輛;(2)當時,萬元;(3)A型號4輛,B型號8輛;A型號10輛,B型號3輛兩種方案【解析】

(1)設A型號的轎車為x輛,可根據題意列出不等式組,根據問題的實際意義推出整數(shù)值;(2)根據“利潤=售價-成本”列出一次函數(shù)的解析式解答;(3)根據(2)中方案設

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論