2025屆遼寧大連市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
2025屆遼寧大連市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
2025屆遼寧大連市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
2025屆遼寧大連市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
2025屆遼寧大連市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆遼寧大連市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖像如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.3.已知直線的一個(gè)方向向量,平面的一個(gè)法向量,若,則()A.1 B.C.3 D.4.若,則=()A.244 B.1C. D.5.雙曲線的焦點(diǎn)坐標(biāo)是()A. B.C. D.6.如圖,平行六面體中,為的中點(diǎn),,,,則()A. B.C. D.7.已知雙曲線的左、右焦點(diǎn)分別為,,過作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.8.下列說法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”9.在直三棱柱中,底面是等腰直角三角形,,點(diǎn)在棱上,且,則與平面所成角的正弦值為()A. B.C. D.10.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.11.在等差數(shù)列中,為其前n項(xiàng)和,,則()A.55 B.65C.15 D.6012.已知雙曲線的離心率,點(diǎn)是拋物線上的一動(dòng)點(diǎn),到雙曲線的上焦點(diǎn)的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則其通項(xiàng)公式_______14.若,則與向量同方向的單位向量的坐標(biāo)為____________.15.將參加冬季越野跑的名選手編號為:,采用系統(tǒng)抽樣方法抽取一個(gè)容量為的樣本,把編號分為組后,第一組的到這個(gè)編號中隨機(jī)抽得的號碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數(shù)為__________16.設(shè)分別是平面的法向量,若,則實(shí)數(shù)的值是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在空間四邊形中,分別是的中點(diǎn),分別是上的點(diǎn),滿足.(1)求證:四點(diǎn)共面;(2)設(shè)與交于點(diǎn),求證:三點(diǎn)共線.18.(12分)已知圓:,點(diǎn)A是圓上一動(dòng)點(diǎn),點(diǎn),點(diǎn)是線段的中點(diǎn).(1)求點(diǎn)的軌跡方程;(2)直線過點(diǎn)且與點(diǎn)的軌跡交于A,兩點(diǎn),若,求直線的方程.19.(12分)已知等差數(shù)列的前n項(xiàng)和為,若公差,且,,成等比數(shù)列.(1)求的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.20.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對恒成立,求實(shí)數(shù)a的取值范圍.21.(12分)如圖,四棱錐中,底面為梯形,底面,,,,.(1)求證:平面平面;(2)設(shè)為上一點(diǎn),滿足,若直線與平面所成的角為,求二面角的余弦值.22.(10分)在平面直角坐標(biāo)系xOy中,曲線1與坐標(biāo)軸的交點(diǎn)都在圓C上(1)求圓C的方程;(2)設(shè)過點(diǎn)P(0,-2)的直線l與圓C交于A,B兩點(diǎn),且AB=2,求l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先求出方程表示雙曲線時(shí)滿足的條件,然后根據(jù)“小推大”的原則進(jìn)行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.2、D【解析】根據(jù)函數(shù)的單調(diào)性得到導(dǎo)數(shù)的正負(fù),從而得到函數(shù)的圖象.【詳解】由函數(shù)的圖象可知,當(dāng)時(shí),單調(diào)遞增,則,所以A選項(xiàng)和C選項(xiàng)錯(cuò)誤;當(dāng)時(shí),先增,再減,然后再增,則先正,再負(fù),然后再正,所以B選項(xiàng)錯(cuò)誤.故選:D.【點(diǎn)睛】本題主要考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,意在考查學(xué)生對該知識的掌握水平,屬于基礎(chǔ)題.一般地,函數(shù)在某個(gè)區(qū)間可導(dǎo),,則在這個(gè)區(qū)間是增函數(shù);函數(shù)在某個(gè)區(qū)間可導(dǎo),,則在這個(gè)區(qū)間是減函數(shù).3、D【解析】由向量平行充要條件代入解之即可解決.【詳解】由,可知,則有,解之得故選:D4、D【解析】分別令代入已知關(guān)系式,再兩式求和即可求解.【詳解】根據(jù),令時(shí),整理得:令x=2時(shí),整理得:由①+②得,,所以.故選:D.5、B【解析】根據(jù)雙曲線的方程,求得,結(jié)合雙曲線的幾何性質(zhì),即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點(diǎn)再軸上,所以雙曲線的焦點(diǎn)坐標(biāo)為.故選:B.6、B【解析】先用向量與表示,然后用向量表示向量與,即可得解【詳解】解:為的中點(diǎn),故選:【點(diǎn)睛】本題考查了平面向量基本定理的應(yīng)用,解決本題的關(guān)鍵是熟練運(yùn)用向量的加法、減法及實(shí)數(shù)與向量的積的運(yùn)算,屬于基礎(chǔ)題7、D【解析】直線的斜率為,計(jì)算,,利用余弦定理得到,化簡知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點(diǎn)睛】本題考查了雙曲線的漸近線,與圓的關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.8、C【解析】A.寫出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個(gè)量詞的命題的否定的要求,即可判斷該命題的正誤.【詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個(gè)為真命題,當(dāng)二者為一真一假時(shí),為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱命題,其命題的否定:“,”,故D錯(cuò)誤,故選:C9、C【解析】取AC的中點(diǎn)M,過點(diǎn)M作,且使得,進(jìn)而證明平面,然后判斷出是與平面所成的角,最后求出答案.【詳解】如圖,取AC的中點(diǎn)M,因?yàn)?,則,過點(diǎn)M作,且使得,則四邊形BDNM是平行四邊形,所以.由題意,平面ABC,則平面ABC,而平面ABC,所以,又,所以平面,而所以平面,連接DA,NA,則是與平面所成的角.而,于是,.故選:.10、B【解析】根據(jù)球的性質(zhì)可求出截面圓的半徑即可求解.【詳解】由球的性質(zhì)可知,截面圓的半徑為,所以截面的面積.故選:B11、B【解析】根據(jù)等差數(shù)列求和公式結(jié)合等差數(shù)列的性質(zhì)即可求得.【詳解】解析:因?yàn)闉榈炔顢?shù)列,所以,即,.故選:B12、B【解析】先根據(jù)離心率得,再根據(jù)拋物線定義得最小值為(為拋物線焦點(diǎn)),解得,即得結(jié)果.【詳解】因?yàn)殡p曲線的離心率,所以,設(shè)為拋物線焦點(diǎn),則,拋物線準(zhǔn)線方程為,因此到雙曲線的上焦點(diǎn)的距離與到直線的距離之和等于,因?yàn)?,所以,即,即雙曲線的方程為,選B.【點(diǎn)睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構(gòu)造法可得,由等比數(shù)列的定義寫出的通項(xiàng)公式,進(jìn)而可得.【詳解】令,則,又,∴,故,而,∴是公比為,首項(xiàng)為,則,∴.故答案為:.14、【解析】由空間向量的模的計(jì)算求得向量的模,再由單位向量的定義求得答案.【詳解】解:因?yàn)?,所以,所以與向量同方向的單位向量的坐標(biāo)為,故答案為:.15、【解析】,所以抽到穿白色衣服的選手號碼為,共16、4【解析】根據(jù)分別是平面的法向量,且,則有求解.【詳解】因?yàn)榉謩e是平面的法向量,且所以所以解得故答案為:4【點(diǎn)睛】本題主要考查空間向量垂直,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】【小問1詳解】連接AC,分別是的中點(diǎn),.在中,,所以四點(diǎn)共面.【小問2詳解】,所以,又平面平面,同理平面,為平面與平面的一個(gè)公共點(diǎn).又平面平面,即三點(diǎn)共線.18、(1);(2)x=1或y=1.【解析】(1)設(shè)線段中點(diǎn)為,點(diǎn),用x,y表示,代入方程即可;(2)分l斜率存在和不存在進(jìn)行討論,根據(jù)弦長求出l方程.【小問1詳解】設(shè)線段中點(diǎn)為,點(diǎn),,,,,,即點(diǎn)C的軌跡方程為.【小問2詳解】直線l的斜率不存在時(shí),l為x=1,代入得,則弦長滿足題意;直線l斜率存在時(shí),設(shè)直線l斜率為k,其方程為,即,圓的圓心到l的距離,則;綜上,l為x=1或y=1.19、(1);(2).【解析】(1)由等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式結(jié)合等比數(shù)列的性質(zhì)列方程可得數(shù)列首項(xiàng)與公差,即可得解;(2)由,結(jié)合裂項(xiàng)相消法即可得解.【詳解】(1)因?yàn)閿?shù)列為等差數(shù)列,,,,成等比數(shù)列,所以,所以,即,又因?yàn)?,所以,所以;?)因?yàn)?,所?【點(diǎn)睛】本題考查了等差數(shù)列與等比數(shù)列的綜合應(yīng)用及裂項(xiàng)相消法的應(yīng)用,考查了運(yùn)算求解能力,屬于中檔題.20、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的正負(fù)判斷極值點(diǎn),代入原函數(shù)計(jì)算即可;(2)將變形,即對恒成立,然后構(gòu)造函數(shù),利用求導(dǎo)判定函數(shù)的單調(diào)性,進(jìn)而確定實(shí)數(shù)a的取值范圍..【小問1詳解】對函數(shù)求導(dǎo)可得:,可知當(dāng)時(shí),時(shí),,即可知在上單調(diào)遞增,在上單調(diào)遞減由上可知,的極大值為,無極小值【小問2詳解】由對恒成立,當(dāng)時(shí),恒成立;當(dāng)時(shí),對恒成立,可變形為:對恒成立,令,則;求導(dǎo)可得:由(1)知即恒成立,當(dāng)時(shí),,則在上單調(diào)遞增;又,因,故,,所以在上恒成立,當(dāng)時(shí),令,得,當(dāng)時(shí),在上單調(diào)遞增,當(dāng)時(shí),在上單調(diào)遞減,從而可知的最大值為,即,因此,對都有恒成立,所以,實(shí)數(shù)a的取值范圍是.21、(1)證明見解析;(2).【解析】(1)由三角形的邊角關(guān)系可證,再由底面,可得.即可證明底面,由面面垂直的判定定理得證.(2)以點(diǎn)為坐標(biāo)原點(diǎn),,,分別為,,軸建立空間坐標(biāo)系,利用空間向量法求出二面角的余弦值.【詳解】解析:(1)證明:由,,,,,所以,又,∴,∴,∴,因?yàn)榈酌?,底面,?因?yàn)?,底面,底面,底面,底面,所以面?(2)由(1)可知為與平面所成的角,∴,∴,,由及,可得,,以點(diǎn)為坐標(biāo)原點(diǎn),,,分別為,,軸建立空間坐標(biāo)系,則,,,,設(shè)平面的法向量為,則,,取,設(shè)平面的法向量為,則,,取,所以,所以二面角余弦值為.【點(diǎn)睛】本題考查面面垂直的判定,線面垂直的性質(zhì),利用空間向量法求二面角的余弦值,屬于中檔題.22、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論