版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Deepfakes
and
Detection姜育剛,馬興軍,吳祖煊Recap:
week9MembershipInferenceAttackDifferentialPrivacyThisWeekGeneralTampering(一般數(shù)據(jù)篡改)Deepfake(深度偽造,圖像)DeepfakeVideos(深度偽造,視頻)DetectionDALL·E3OpenAIText2Image,
ImageEditing…Imagen
2GoogleText2Image,
Text2VedioStableDiffusion
3StabilityAIText2Image,
ImageEditing…SignificantProgressinComputerVisionThis
person
does
not
exist,/
AnAI-generatedportraitsoldfor$432,000attheChristie‘s(2018)AIartworkwonfirstprizeinartcompetition.(2022)Theresolutionandfidelityofgeneratedfaceimagesareconstantlyimproving.20192021SignificantProgressinComputerVisionGenerateanimageusingthefirstparagraphof"OneHundredYearsofSolitude"
(2021)DaLL·E2(2022)Generateanimagebasedontext:“Ihave
alwayswantedtobeacoolpandaridingaskateboardinSantaMonica.”Imagic(2022)Editimageswithtext.SignificantProgressinComputerVisionDataTamperingandForgeryDefinition:Tamperimagesandvideoswithvarietyoftechniques,suchasdeepfakes.Accordingtothecontentandtypeofthetampereddata:
generaltampering&faceforgery.
AfakeimageaboutBushJr.electionThisWeek
GeneralTamperingDeepfakeDeepfakeVideosDetectionGeneralTamperingDefinition:tampertheoriginalimagebyadjustingthespatialpositionofobjects,replacingtheoriginalcontentwithforgedcontent(stylemodification,texturetransformation,imagerestoration…)
TaxonomyContext-basedtamperforegroundobjectstamperimagebackgroundConditionedText-guidedimagetamperingGeneralTamperingModeldifferentelementsintheimage:theshapeofobjects,theinteractionbetweenobjectsandtheirrelativepositions,…
?CoreProblem:howtodecoupledifferentelementsinanimage?(Foreground&Background,Texture&Structure,…)ForegroundTamperingConstructobject-levelsemanticsegmentationmapsHong,S
et
al.
Learninghierarchicalsemanticimagemanipulationthroughstructured
representations.
NeurIPS,
2018.BackgroundTamperingZou,Z
et
al.Castleinthesky:dynamicskyreplacementandharmonizationinvideos.
IEEETransactionsonImageProcessing.
2022.thebackgroundcanbeviewedasalargerobjectText-guidedTampering|CLIPRadford,A.
et
al.Learningtransferablevisualmodelsfromnaturallanguagesupervision.
ICML,
2021.Text-guidedTampering|CLIP+StyleGANPatashnik,O.
et
al.Styleclip:text-drivenmanipulationofstyleganimagery.
ICCV,
2021.Text-guidedTampering|StyleGANLatent
codeMapping
functionResidual
codetarget
codePatashnik,O.
et
al.Styleclip:text-drivenmanipulationofstyleganimagery.
ICCV,
2021.Text-guidedTampering|DiffusionHo,J.
et
al.Denoisingdiffusionprobabilisticmodels.NeurIPS,
2020.ThedirectedgraphicalmodelofDDPMGraphicalmodelsfordiffusion(left)andnon-Markovian(right)inferencemodelsSong,J.
et
al.Denoisingdiffusionimplicitmodels.ICLR,
2022.Text-guidedTampering|CLIP+DiffusionRombachR.etal.High-resolutionimagesynthesiswithlatentdiffusionmodels,
CVPR,2022.StableDiffusionThisWeekGeneralTampering
DeepfakeDeepfakeVideosDetectionDeepfakeDefinition:
believablemediageneratedbyadeepneuralnetworkForm:
generation&manipulationofhumanimageryDeeplearning+fakeGANs(GenerativeAdversarialNetworks)Derivesfromthe“zero-sumgame”ingametheory.LearnthedistributionofdatathroughaGeneratorandaDiscriminatorFaceForgeryAlice’sbodywithBob’sfaceAliceBobDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryReenactment(人臉重演)Replacement(人臉互換)Editing(人臉編輯)Synthesis(人臉合成)MirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys(CSUR),2021,54(1):1-41.
FaceForgerySTEPS:DetectsandcropsthefaceExtractsintermediaterepresentationsGeneratesanewfacebasedonsomedrivingsignalBlendsthegeneratedfacebackintothetargetframeMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys(CSUR),2021,54(1):1-41.FaceReenactmentSTEPSingeneral:facetracking(面部追蹤)facematching(面部匹配)facetransfer(面部遷移)PareidoliaFaceReenactmentSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.pareidoliafacereenactmentPareidoliaFaceReenactmentChallengesThetargetfacesarenothumanfaces1Shapevariance2Texturevariancee.g.squaremouthe.g.woodtextureSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.PURAParametricUnsupervisedReenactmentAlgorithmParametricShapeModeling(PSM,參數(shù)化形狀建模)ExpansionaryMotionTransfer(EMT,擴(kuò)展運(yùn)動(dòng)遷移)UnsupervisedTextureSynthesizer
(UTS,無(wú)監(jiān)督紋理合成器)Song,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.PURAParametricUnsupervisedReenactmentAlgorithmSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.FaceReplacement|SimswapHighFidelityFaceSwappingChen,R.
et
al.Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2021.?lacktheabilitytogeneralizetoarbitraryidentity?failtopreserveattributeslikefacialexpressionandgazedirectionIDInjectionModule(IIM)(身份注入模塊)WeakFeatureMatchingLoss(弱特征匹配損失)FaceReplacement|SimswapHighFidelityFaceSwappingChen,R.,et
al.
Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2020FaceReplacement|SimswapIdentityLossWeakFeatureMatchingLossChen,R.,et
al.
Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2020ThisWeekGeneralTamperingDeepfake
DeepfakeVideosDetectionDeepfakeVideosMoredimensions:TiminginformationTherelativepositionofdifferentsubjectsandobjectsAudiofakesDeepfakeVideosChallengesHowtogeneratereasonablegesturesHowtogenerateafakevideoinhighresolutionHowtogeneratehigh-qualitylongvideosReasonableGesturesSiarohin,A.
et
al.Firstordermotionmodelforimageanimation.
NeurIPS,
2-19.First-order-motionModelReasonableGesturesSiarohin,A.
et
al.
Firstordermotionmodelforimageanimation.
NeurIPS,
2019.MotionEstimationModuleUseasetoflearnedkeypointsandtheiraffinetransformationstopredictdensemotionReasonableGesturesGenerationModuleWarpthesourceimageaccordingtoInpainttheimagepartsthatareoccludedinthesourceimage.Siarohin,A.
et
al.
Firstordermotionmodelforimageanimation.
NeurIPS,
2019.HighResolutionTian,Y.,
et
al.
Agoodimagegeneratoriswhatyouneedforhigh-resolutionvideosynthesis.ICLR,
2022.MoCoGAN-HDHigh-qualityLongVideosYu,S.
et
al.Generatingvideoswithdynamics-awareimplicitgenerativeadversarialnetworks.arXivpreprintarXiv:2202.10571.DIGANThisWeekGeneralTamperingDeepfakeDeepfakeVideos
DetectionTamperingDetectionTaxonomy:GeneralTamperingDetection——whetheranordinaryobjectinanimagehasbeentamperedwithDeepfakeDetection——whetherthepartofthefaceintheimagehasbeentamperedwithFeatures&SemanticsGeneralTamperingDetectionExistinggeneraltamperingdetectionmethodsmainlyfocusonsplicing,copy-moveandremovalGeneralTamperingDetectionEarlydetectionmethodsImageTamperingThecorrelationbetweenpixelsintroducedduringcameraimaging(LCA,…)Thefrequency-domainorstatisticalfeaturesoftheimageandthenoiseitcontains(PRNU)GeneralTamperingDetectionCopy-moveDetectionMethodsBlock-basedregionduplicationDivideanimageintomanyequal-sizeblocks,andifduplicatedregionsexistintheimage,thereshouldbeduplicatedblocksaswell.Comparetheblocks.(Pixelvalues,Statisticalmeasures,Frequencycoefficients,Momentinvariants,…)Keypoint-basedregionduplicationConcentrateonafewkeypointswithinanimagesothecomputationcostcanbesignificantlyreduced.(SIFT,SURF)SplicingDetectionMethodsEdgeanomalyRegionanomaly:JPEGcompressionRegionanomaly:lightinginconsistencyRegionanomaly:inconsistencesofcameratracesGeneralTamperingDetectionGeneralTamperingDetectionRemovalDetectionMethodsBlurringartifactsbydiffusion-basedtamperingBlockduplicationbyexemplar-basedtamperingGeneralTamperingDetectionLaterdetectionmethods(DL)Medianfilteringforensics+CNN(Chenetal.,2015)RGB-N(Zhouetal.,2018)SPAN,spatialpyramidattentionnetwork(Huetal.,2020)Mantra-Net(Wuetal.,2019)PSCC-Net,progressivespatio-channelcorrelationnetwork(Liuetal.,2022)CountermeasuresDetectionPreventionMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021,54(1):1-41.Detection|Artifact-specificDeepfakesoftengenerateartifactswhichmaybesubtletohumans,butcanbeeasilydetectedusingmachinelearningandforensicanalysis.Blending
(spatial)Environment(spatial)
Forensics(spatial)
Behavior(temporal)Physiology(temporal)Synchronization
(temporal)Coherence(temporal)MirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021,54(1):1-41.BlendingTrainedaCNNtopredictanimage’sblendingboundaryandalabel(realorfake)LingzhiLi,et
al.Facex-rayformoregeneralfaceforgerydetection.CVPR,
2020.BlendingSplicesimilarfacesfoundthroughfaciallandmarksimilaritytogenerateadatasetoffaceswaps.OverviewofgeneratingatrainingsampleLingzhiLi,et
al.Facex-rayformoregeneralfaceforgerydetection.CVPR,
2020.ForensicsDetectdeepfakesbyanalyzingsubtlefeaturesandpatternsleftbythemodel.GANsleaveuniquefingerprintsItispossibletoclassifythegeneratorgiventhecontent,eveninthepresenceofcompressionandnoiseNingYu
et
al.AttributingfakeimagestoGANs:LearningandanalyzingGANfingerprints.ICCV,
2019.Detection|UndirectedApproachesTraindeepneuralnetworksasgenericclassifiers,andletthenetworkdecidewhichfeaturestoanalyze.ClassificationAnomalyDetectionClassificationTharinduF.,
et
al.
ExploitingHumanSocialCognitionfortheDetectionofFakeandFraudulentFacesviaMemoryNetworks.
arXiv:1911.07844.HierarchicalMemoryNetwork(HMN)architectureAnomalyDetectionanomalydetectionmodelsaretrainedonthenormaldataandthendetectoutliersduringdeployment.RunWang
et
al.Fakespotter:
Asimplebaselineforspottingai-synthesizedfakefaces.arXiv:1909.06122.Monitorneuronbehaviors(coverage)tospotAI-synthesizedfakefaces.Obtainastrongersignalfromthanjustusingtherawpixels.Isabletoovercomenoiseandotherdistortions.Detection|SummaryMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021.Detection|SummaryMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021.Prevention&MitigationDataprovenance(數(shù)據(jù)溯源)Dataprovenanceofmultimediashouldbetrackedthroughdistributedledgersandblockchainnetworks.(Fraga-Lamasetal.,2019)ThecontentshouldberankedbyparticipantsandAI.(Chenetal.,2019.)Thecon
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物可吸收支架臨床應(yīng)用進(jìn)展
- XX單位2025年冬季安全生產(chǎn)隱患排查整治工作情況報(bào)告
- 生物制品長(zhǎng)期穩(wěn)定性試驗(yàn)方案制定規(guī)范
- 生物制劑臨床試驗(yàn)中期療效預(yù)測(cè)模型構(gòu)建
- 深度解析(2026)《GBT 20501.3-2017公共信息導(dǎo)向系統(tǒng) 導(dǎo)向要素的設(shè)計(jì)原則與要求 第3部分:平面示意圖》
- 物聯(lián)網(wǎng)技術(shù)人才招聘面試題集與解析
- 生活質(zhì)量改善為目標(biāo)的兒童癥狀控制方案設(shè)計(jì)
- 金融科技合規(guī)官面試題及反洗錢(qián)措施含答案
- 游戲行業(yè)運(yùn)營(yíng)策劃經(jīng)理面試題及答案
- 面試題解析渤海銀行政助理崗位
- 胎膜早破的診斷與處理指南
- 被壓迫者的教育學(xué)
- 2025年科研倫理與學(xué)術(shù)規(guī)范期末考試試題及參考答案
- 2025年國(guó)家開(kāi)放電大行管本科《公共政策概論》期末考試試題及答案
- 四川省教育考試院2025年公開(kāi)招聘編外聘用人員筆試考試參考試題及答案解析
- 超市商品陳列學(xué)習(xí)培訓(xùn)
- 2025年中級(jí)煤礦綜采安裝拆除作業(yè)人員《理論知識(shí)》考試真題(含解析)
- 2025年電機(jī)與拖動(dòng)基礎(chǔ)期末考試題庫(kù)及答案
- 防噴演練及硫化氫防護(hù)流程
- 隧道通風(fēng)機(jī)操作規(guī)程及維護(hù)指南
- 全國(guó)大學(xué)生職業(yè)規(guī)劃大賽《城市軌道交通運(yùn)營(yíng)管理》專業(yè)生涯發(fā)展展示【高職(??疲?/a>
評(píng)論
0/150
提交評(píng)論