2022年河北省石家莊市十八縣中考數(shù)學(xué)二模試卷(解析版)_第1頁(yè)
2022年河北省石家莊市十八縣中考數(shù)學(xué)二模試卷(解析版)_第2頁(yè)
2022年河北省石家莊市十八縣中考數(shù)學(xué)二模試卷(解析版)_第3頁(yè)
2022年河北省石家莊市十八縣中考數(shù)學(xué)二模試卷(解析版)_第4頁(yè)
2022年河北省石家莊市十八縣中考數(shù)學(xué)二模試卷(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年河北省石家莊市十八縣中考數(shù)學(xué)二模試卷

一、選擇題(本大題有16個(gè)小題,共42分.1?10小題各3分,11?16小題各2分.在每小

題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

1.下列圖形中,是直角三角形的是()

A.+B.-C.XD.

3.計(jì)算:1252-50X125+252=()

A.100B.150C.10000D.22500

4.已知一個(gè)幾何體及其左視圖如圖所示,則該幾何體的主視圖是()

D.

A?屋+屋與AB.(")3與C.。2-。2與2。2D.與

6.用科學(xué)記數(shù)法表示為“X10"的形式,則下列說(shuō)法正確的是()

600000

A.a,〃都是負(fù)數(shù)B.。是負(fù)數(shù),〃是正數(shù)

C.a,"都是正數(shù)D.。是正數(shù),〃是負(fù)數(shù)

7.觀察下列尺規(guī)作圖的痕跡:

①②③④

其中,能夠說(shuō)明A8>AC的是()

A.①②B.②③C.①③D.③④

8.某校舉辦了以“展禮儀風(fēng)采,樹(shù)文明形象”為主題的比賽.已知某位選手的禮儀服裝、

語(yǔ)言表達(dá)、舉止形態(tài)這三項(xiàng)的得分分別為95分,80分,80分,若依次按照40%,25%,

35%的百分比確定成績(jī),則該選手的成績(jī)是()

A.86分B.85分C.84分D.83分

9.如圖,要判斷一塊紙帶的兩邊a,6相互平行,甲、乙、丙三人的折疊與測(cè)量方案如下:

aaCA

bb'-B-D

甲:沿圖中虛線折乙:沿圖中AB折巍,丙:先沿AB折盤,展開(kāi)

盤并展開(kāi),測(cè)量發(fā)

并測(cè)得NI=N2后在沿CD折盤,測(cè)得

現(xiàn)N1=N2

AO=BO,CO=DO

下列判斷正確的是()

A.甲、乙能得到?!ㄍ弑荒?/p>

B.甲、丙能得到乙不能

C.乙、丙能得到甲不能

D.甲、乙、丙均能得到a〃匕

10.雪上項(xiàng)目占據(jù)了2022年北京冬奧會(huì)的大部分比賽項(xiàng)目,有自由式滑雪、越野滑雪、跳

臺(tái)滑雪、無(wú)舵雪橇、有舵雪橇、高山滑雪等.如圖,某滑雪運(yùn)動(dòng)員在坡度為5:12的雪

道上下滑65〃?,則該滑雪運(yùn)動(dòng)員沿豎直方向下降的高度為()

A.13〃iB.25mC.等”D.156,〃

12

11.如圖,在四邊形48CD中,AB=AD,BC=DC,AC,BD交于點(diǎn)0.關(guān)于四邊形ABC。

的形狀,甲、乙、丙三人的說(shuō)法如下:

甲:若添加“AB〃CZT,則四邊形ABCZ)是菱形;

乙:若添加“NBAQ=90°”,則四邊形ABCD是矩形;

丙:若添加“/A8C=/8C£>=/9(r",則四邊形A8CD是正方形.

則說(shuō)法正確是()

A.甲、乙B.甲、丙C.乙、丙D.甲、乙、丙

12.如圖(1)是兩圓柱形聯(lián)通容器(聯(lián)通外體積忽略不計(jì)).向甲容器勻速注水,甲容器

的水面高度hCem)隨時(shí)間t(分)之間的函數(shù)關(guān)系如圖(2)所示,根據(jù)提供的圖象信

息,若甲的底面半徑為1C77Z,則乙容器底面半徑為()

f=j=

u1t(分)

CD(2)

A.5cmB.4cmC.3cmD.2cm

13.如圖,邊48是。。內(nèi)接正六邊形的一邊,點(diǎn)C在益上,且BC是。0內(nèi)接正八邊形的

一邊,若AC是內(nèi)接正〃邊形的一邊,則”的值是()

o

A.6B.12C.24D.48

14.要比較與8=3>中的大?。▁是正數(shù)),知道A-2的正負(fù)就可以判斷,則

x+12

下列說(shuō)法正確的是()

A.A》BB.A>BC,A^BD.A<B

15.如圖,矩形OABC中,A(-3,0),C(0,2),拋物線y=-2(x-m)2-w+1的

頂點(diǎn)Af在矩形0A8C內(nèi)部或其邊上,則加的取值范圍是()

A.-3W,〃W0B.-3WmW-lC.-D.-IWmWO

16.如圖所示,點(diǎn)O為△ABC的內(nèi)心,ZB=50°,BC<AB,點(diǎn)、M,N分別為A8,8c上

的點(diǎn),且ON=OM.甲、乙、丙三位同學(xué)有如下判斷:

甲:/MON=130°;

乙:四邊形OMBN的面積是逐漸變化的;

丙:當(dāng)0N_L8CH寸,△MCW周長(zhǎng)取得最小值.

其中正確的是()

A.只有甲正確B.只有甲、丙正確

C.只有甲、乙正確D.甲、乙、丙都正確

二、填空題(本大題有3個(gè)小題,每小題有2個(gè)空,每空2分,共12分)

17.若〃、〃互為相反數(shù),則"+"-2)的值為;若“、6互為倒數(shù),則1-2022叫

18.如圖,在數(shù)軸原點(diǎn)。的右側(cè),一質(zhì)點(diǎn)P從距原點(diǎn)10個(gè)單位的點(diǎn)A處向原點(diǎn)方向跳動(dòng),

第一次跳動(dòng)到OA的中點(diǎn)Ai處,則點(diǎn)A,表示的數(shù)為;第二次從Aj點(diǎn)跳動(dòng)到04

的中點(diǎn)4處,第三次從4點(diǎn)跳動(dòng)到。人的中點(diǎn)4處,如此跳動(dòng)下去,則第四次跳動(dòng)后,

該質(zhì)點(diǎn)到原點(diǎn)。的距離為.

19.(1)如圖1,正方形A8C。的面積為“,延長(zhǎng)邊8C到點(diǎn)G,延長(zhǎng)邊8到點(diǎn)。i,延

長(zhǎng)邊D4到點(diǎn)4,延長(zhǎng)邊AB到點(diǎn)Bi,使CG=BC,DD\=CD,AA\=DA,BBi=AB,

連接CQi,DiAi,4田,BiCi,得到四邊形ABCQi,此時(shí)我們稱四邊形ABC。向外擴(kuò)

展了一次,若陰影部分的面積為$,則$=.(用含。的代數(shù)式表示)

(2)如圖2,任意四邊形488面積為像(1)中那樣將四邊形A8C力向外進(jìn)行兩

次擴(kuò)展,第一次擴(kuò)展成四邊形4SGA,第二次擴(kuò)展由四邊形擴(kuò)展成四邊形

A2B2C2D2,若陰影部分面積為$2,則S2=.(用含機(jī)的代數(shù)式表示)

三、解答題(本大題有7個(gè)小題,共66分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟)

20.某校為實(shí)現(xiàn)垃圾分類投放,計(jì)劃購(gòu)進(jìn)大小兩種垃圾桶,大小垃圾桶的進(jìn)價(jià)分別為,〃元/

個(gè)、50元/個(gè),購(gòu)進(jìn)7個(gè)大垃圾桶和10個(gè)小垃圾桶.

(1)用含機(jī)的代數(shù)式表示共付款多少元?

(2)若機(jī)=110,學(xué)校預(yù)算購(gòu)買垃圾桶資金為1200元是否夠用?為什么?

21.按照如圖所示的程序計(jì)算:

(1)若輸入4=-9時(shí),求輸出結(jié)果6的值;

(2)當(dāng)輸入一個(gè)正數(shù)。時(shí),輸出的結(jié)果6不大于-11,求輸入a的取值范圍.

b=-3a+7

/4出結(jié)果//

22.某校七、八年級(jí)各有500名學(xué)生,為了解該校七、八年級(jí)學(xué)生對(duì)黨史知識(shí)的掌握情況,

從七、八年級(jí)學(xué)生中各隨機(jī)抽取15人進(jìn)行黨史知識(shí)測(cè)試,統(tǒng)計(jì)這部分學(xué)生的測(cè)試成績(jī)(成

績(jī)均為整數(shù),滿分10分,8分及8分以上為優(yōu)秀),相關(guān)數(shù)據(jù)統(tǒng)計(jì)整理如下:

七年級(jí)抽取學(xué)生的成績(jī):6,6,6,8,8,8,8,8,8,8,9,9,9,9,10.

七、八年級(jí)抽取學(xué)生的測(cè)試成績(jī)統(tǒng)計(jì)表

年級(jí)七年級(jí)八年級(jí)

平均數(shù)88

眾數(shù)a7

中位數(shù)8b

優(yōu)秀率80%60%

(1)填空:a=,h=.

(2)根據(jù)以上數(shù)據(jù),你認(rèn)為該校七、八年級(jí)中,哪個(gè)年級(jí)的學(xué)生黨史知識(shí)掌握得較好?

請(qǐng)說(shuō)明理由(寫出一條即可).

(3)請(qǐng)估計(jì)七、八年級(jí)學(xué)生對(duì)黨史知識(shí)掌握能夠達(dá)到優(yōu)秀的總?cè)藬?shù);

(4)現(xiàn)從七、八年級(jí)獲得10分的4名學(xué)生中隨機(jī)抽取2人參加市黨史知識(shí)競(jìng)賽,請(qǐng)用

列表法或畫樹(shù)狀圖法,求出被選中的2人恰好是七、八年級(jí)各1人的概率.

八年級(jí)抽取學(xué)生的測(cè)試成績(jī)條形統(tǒng)計(jì)圖

23.如圖,在平面直角坐標(biāo)系xOv中,函數(shù)y=K(x>0)的圖象與直線y=x-2交于點(diǎn)A

X

(4,m).

(1)求A,"2的值;

(2)已知點(diǎn)尸(小〃)(心0),過(guò)點(diǎn)尸作平行于x軸的直線,交直線y=x-2于點(diǎn)M,

過(guò)點(diǎn)尸作平行于y軸的直線,交函數(shù)y=K(x>0)的圖象于點(diǎn)N.

x

①當(dāng)”=2時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說(shuō)明理由;

②若PN》PM,結(jié)合函數(shù)的圖象,直接寫出〃的取值范圍.

24.如圖,AB是半圓。的直徑;O是半圓。上不同于A、8兩點(diǎn)的任意一點(diǎn):C是半圓。

上一動(dòng)點(diǎn),AC與8。相交于點(diǎn)F,BE是半圓。所在圓的切線,與AC的延長(zhǎng)線相交于點(diǎn)

E.

(1)若AD=8C,求證:/XCAA四△D4B;

(2)若BE=BF,ZDAC=30Q,AB=S.求S題形COB;(答案保留IT)

(3)若AB=8,H為AC的中點(diǎn),點(diǎn)C從8移動(dòng)到A時(shí),請(qǐng)直接寫出點(diǎn),移動(dòng)的長(zhǎng)度.(答

案保留n)

E

D

25.某公司購(gòu)進(jìn)一批受環(huán)境影響較大的商品,需要在特定的環(huán)境中才能保存,己知該商品成

本y(元/件)與保存的時(shí)間第x(天)之間的關(guān)系滿足y=/-4x+100,該商品售價(jià)2(元

/件)與保存時(shí)間第X(天)之間滿足一次函數(shù)關(guān)系,其對(duì)應(yīng)數(shù)據(jù)如表:

X(天)...57...

P(元/件)...248264...

(1)求商品的售價(jià)p(元/件)與保存時(shí)間第X(天)之間的函數(shù)關(guān)系式;

(2)求保存第幾天時(shí),該商品不賺也不虧;

(3)請(qǐng)你幫助該公司確定在哪一天賣出,每件商品能獲得最大利潤(rùn),此時(shí)每件商品的售

價(jià)是多少?

26.如圖1,在矩形A8C。中,E,F,G分別為邊BC,AB,的中點(diǎn),連接。F,EF,H

為。尸中點(diǎn),連接GH,將ABEF繞點(diǎn)B旋轉(zhuǎn).

(1)當(dāng)ABE尸旋轉(zhuǎn)到如圖2位置,且時(shí),猜想G”與CE之間的關(guān)系,并證明

你的猜想;

(2)已知AB=6,BC=8.

①當(dāng)△BEF旋轉(zhuǎn)到如圖3位置時(shí),猜想GH與CE之間的數(shù)量關(guān)系,并說(shuō)明理由.

②射線G”,CE相交于點(diǎn)。,連接8Q,在△8EF旋轉(zhuǎn)過(guò)程中,BQ有最小值,請(qǐng)直接寫

出BQ的最小值.

圖1圖2圖3

參考答案

一、選擇題(本大題有16個(gè)小題,共42分.1?10小題各3分,11?16小題各2分.在每小

題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

1.下列圖形中,是直角三角形的是()

【分析】根據(jù)三角形的內(nèi)角和定理和直角三角形的判定解答即可.

解:4、第三個(gè)角的度數(shù)是180。-60°-60°=60°,是等邊三角形,不符合題意;

B、第三個(gè)角的度數(shù)是180。-55.5°-34.5°=90°,是直角三角形,符合題意;

C、第三個(gè)角的度數(shù)是180°-30°-30°=120°,是鈍角三角形,不符合題意;

D、第三個(gè)角的度數(shù)是180°-40°-62.5°=77.5°,不是直角三角形,不符合題意;

故選:B.

2.在等式“(-6)口(-3)=2"中,“口”里的運(yùn)算符號(hào)應(yīng)是()

A.+B.C.XD.4-

【分析】根據(jù)有理數(shù)的相應(yīng)的運(yùn)算法則對(duì)式子進(jìn)行分析,不難得出結(jié)果.

解:(-6)+(-3)=2,

故選:D.

3.計(jì)算:1252-50X125+25?=()

A.100B.150C.10000D.22500

【分析】直接利用完全平方公式分解因式,進(jìn)而計(jì)算得出即可.

解:1252-50X125+252

=(125-25)2

=10000.

故選:C.

4.已知一個(gè)幾何體及其左視圖如圖所示,則該幾何體的主視圖是()

【分析】根據(jù)主視圖的定義,并從實(shí)線和虛線想象幾何體看得見(jiàn)部分和看不見(jiàn)部分的輪

廓線,據(jù)此可得.

解:由主視圖定義知,該幾何體的主視圖為:

故選:4

5.一定相等的是()

A.標(biāo)+序與“4B.3與C.42-42與2a2D."6+.2與“3

【分析】利用合并同類項(xiàng)法則,同底數(shù)器的除法法則,塞的乘方與積的乘方的法則對(duì)每

個(gè)選項(xiàng)進(jìn)行分析,即可得出答案.

解:?.,那+次=202204,

...選項(xiàng)A不符合題意;

V(a3)3=a9,

選項(xiàng)B符合題意;

"."a2-a2=0^2a2,

選項(xiàng)C不符合題意;

Va64-a2=a4^t73,

選項(xiàng)。不符合題意;

故選:B.

6.7;高刀用科學(xué)記數(shù)法表示為“X10"的形式,則下列說(shuō)法正確的是()

600000

A.a,〃都是負(fù)數(shù)B.〃是負(fù)數(shù),”是正數(shù)

C.a,〃都是正數(shù)D.a是正數(shù),〃是負(fù)數(shù)

【分析】絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為“X10”,與較大

數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)整數(shù)指數(shù)累,指數(shù)由原數(shù)左邊起第一個(gè)不為零

的數(shù)字前面的0的個(gè)數(shù)所決定.

故。是正數(shù),〃是負(fù)數(shù).

故選:D.

7.觀察下列尺規(guī)作圖的痕跡:

【分析】利用線段的垂直平分線的性質(zhì),三邊關(guān)系,作一條線段等于已知線段判斷即可.

解:如圖①中,由作圖可知,EB=EC,

':EA+EC>AC,

:.EA+EB>AC,B|IAB>AC.

如圖③中,由作圖可知,AT=AC,

?.?點(diǎn)T在線段AB上,

:.AB>AT,BPAB>AC.

故選:C.

8.某校舉辦了以“展禮儀風(fēng)采,樹(shù)文明形象”為主題的比賽.已知某位選手的禮儀服裝、

語(yǔ)言表達(dá)、舉止形態(tài)這三項(xiàng)的得分分別為95分,80分,80分,若依次按照40%,25%,

35%的百分比確定成績(jī),則該選手的成績(jī)是()

A.86分B.85分C.84分D.83分

【分析】根據(jù)加權(quán)平均數(shù)的計(jì)算公式列出算式,再進(jìn)行計(jì)算即可得出答案.

解:根據(jù)題意得:

95X40%+80X25%+80X35%=86(分),

故選:4

9.如圖,要判斷一塊紙帶的兩邊。,匕相互平行,甲、乙、丙三人的折疊與測(cè)量方案如下:

aCA

bbBD

甲:沿圖中虛線折乙:沿圖中AB折巍,丙:先沿AB折盤,展開(kāi)

靛并展開(kāi),測(cè)蚩發(fā)

并測(cè)得Nl=N2后在沿CD折彝,測(cè)得

現(xiàn)N1=N2

AO=BO,CO=DO

下列判斷正確的是()

A.甲、乙能得到?!?,丙不能

B.甲、丙能得到?!?,乙不能

C.乙、丙能得到。〃6,甲不能

D.甲、乙、丙均能得到

【分析】根據(jù)全等三角形的判定與性質(zhì)、平行線的判定定理求解即可.

解:甲、,.,Z1=Z2,

:.a//b(內(nèi)錯(cuò)角相等,兩直線平行),

乙、由/1=N2,不能判定

丙、在△AOC和△BOO中,

A0=B0

,ZA0C=ZB0D,

CO=DO

...△AOC絲△BOO(SAS),

:.ZCAO=ZDBO,

*.a//b,

故選:B.

10.雪上項(xiàng)目占據(jù)了2022年北京冬奧會(huì)的大部分比賽項(xiàng)目,有自由式滑雪、越野滑雪、跳

臺(tái)滑雪、無(wú)舵雪橇、有舵雪橇、高山滑雪等.如圖,某滑雪運(yùn)動(dòng)員在坡度為5:12的雪

道上下滑65根,則該滑雪運(yùn)動(dòng)員沿豎直方向下降的高度為()

A.13?nB.25mC.笙“D.156w

12

【分析】依據(jù)題意畫出圖形,再根據(jù)坡比可得2c的高度,

C

由題意得,AB=65m,8CLAC于C,

?.?斜坡的坡比是5:12,

.,.設(shè)8c=5”,則AC=12a,

由勾股定理可得AB={(5a)(12a)2=13〃,

A13a=65,

解得a=5,

BC—5a=25,

故選:B.

11.如圖,在四邊形ABC。中,A8=AO,BC=DC,AC,BD交于點(diǎn)O.關(guān)于四邊形ABC。

的形狀,甲、乙、丙三人的說(shuō)法如下:

甲:若添加“AB〃CZT,則四邊形ABC。是菱形;

乙:若添加“/84。=90°”,則四邊形488是矩形;

丙:若添加“NABC=/BCO=/90°”,則四邊形ABC。是正方形.

則說(shuō)法正確是()

A.甲、乙B.甲、丙C,乙、丙D.甲、乙、丙

【分析】根據(jù)BC=DC,可以得到AC垂直平分8,然后再根據(jù)各個(gè)選項(xiàng)中

的條件,可以判斷各個(gè)選項(xiàng)中的說(shuō)法是否正確,從而可以解答本題.

解:\'AB=AD,BC=DC,

垂直平分BD,

當(dāng)添加:,則

,:/BDC=/DBC,

:.ZABO^ZCBO,

又,:BO=BO,ZBOA=ZBOC,

:./\ABO^^CBO(ASA),

:.AB^BC^CD=DA,

四邊形ABC。是菱形,故甲說(shuō)法正確;

當(dāng)添加“N8AO=90°,無(wú)法證明四邊形A8CD是矩形,故乙說(shuō)法錯(cuò)誤;

當(dāng)添加條件“/A8C=/BCD=90°”時(shí),

貝l]NABC+N8C£>=180°,

J.AB//CD,

由證選項(xiàng)A可知四邊形ABCD是菱形,

VZABC=90",

二四邊形ABC。是正方形,故丙說(shuō)法正確;

故選:B.

12.如圖(1)是兩圓柱形聯(lián)通容器(聯(lián)通外體積忽略不計(jì)).向甲容器勻速注水,甲容器

的水面高度h(cm)隨時(shí)間f(分)之間的函數(shù)關(guān)系如圖(2)所示,根據(jù)提供的圖象信

息,若甲的底面半徑為1cm,則乙容器底面半徑為()

A.5cmB.4c〃?C.3cmD.2cm

【分析】由注滿相同高度的水乙容器所需的時(shí)間為甲容器的4倍,結(jié)合甲容器的底面半

徑即可求出乙容器的底面半徑,此題得解.

解:觀察函數(shù)圖象可知:乙容器底面積為甲容器底面積的4倍,

,乙容器底面半徑為2cm.

故選:D.

13.如圖,邊AB是。。內(nèi)接正六邊形的一邊,點(diǎn)C在窟匕且BC是。。內(nèi)接正八邊形的

一邊,若AC是。。內(nèi)接正〃邊形的一邊,則”的值是()

A.6B.12C.24D.48

【分析】根據(jù)中心角的度數(shù)=360。+邊數(shù),列式計(jì)算分別求出/A。'/BOC的度數(shù),

則NAOC=15°,則邊數(shù)〃=360°+中心角.

解:連接。C,

-:AB是。。內(nèi)接正六邊形的一邊,

/.ZAOB=36004-6=60°,

???BC是OO內(nèi)接正八邊形的一邊,

AZBOC=360°4-8=45°,

/.ZAOC^ZAOB-ZBOC=60Q-45°=15°,

An=360°+15°=24;

故選C.

14.要比較A=與與8=繆中的大小(x是正數(shù)),知道A-8的正負(fù)就可以判斷,則

x+12

下列說(shuō)法正確的是()

A.B.A>BC.AW8D.A<B

【分析】先計(jì)算A-8并判斷結(jié)果的正負(fù)即可.

解:4_8=&二22且」=但一])2,

2(x+l)2(x+1)

Vx>0,-(x-l)2W0,

;.A-BWO,

故選:c.

15.如圖,矩形0ABe中,A(-3,0),C(0,2),拋物線y=-2(x-/n)2-m+\的

頂點(diǎn)〃在矩形O43C內(nèi)部或其邊上,則機(jī)的取值范圍是()

A.-3WmW0B.-3WmW-lC.-lW/nW2D.-IWmWO

【分析】先求出頂點(diǎn)坐標(biāo),再確定頂點(diǎn)橫、縱坐標(biāo)的取值范圍,解不等式組即可.

解:,拋物線丁=-2(x-m')2-〃2+1,

二頂點(diǎn)M(w,-m+1),

VA(-3,0),C(0,2),頂點(diǎn)M在矩形0A3C內(nèi)部或其邊上

.[-SKntCO

12

解得:-1W機(jī)wo.

故選:D.

16.如圖所示,點(diǎn)。為△ABC的內(nèi)心,NB=50°,8CVAB,點(diǎn)M,N分別為48,8c上

的點(diǎn),且ON=OM.甲、乙、丙三位同學(xué)有如下判斷:

甲:ZMON=130°;

乙:四邊形OMBN的面積是逐漸變化的;

丙:當(dāng)ONJ_BC時(shí),/sMON周長(zhǎng)取得最小值.

B.只有甲、丙正確

C.只有甲、乙正確D.甲、乙、丙都正確

【分析】過(guò)點(diǎn)O作ODLBC,OE±AB于點(diǎn)D,E,根據(jù)三角形內(nèi)心可得OD=OE,然后

證明△£><?可絲/XEOM,可得ON=OM;連接OB,根據(jù)△OON9△EOM,可得四邊形

0M2N的面積=2*B。。,根據(jù)點(diǎn)。的位置固定,可得四邊形0M8N的面積是定值;過(guò)點(diǎn)

。作OFJ_MN于點(diǎn)尸,根據(jù)ON=OM,NMON=130°,可得NONM=25°,MN=2NF

=2ONcos25。,所以的周長(zhǎng)=2ON(cos25。+1),可得當(dāng)ON最小時(shí),即當(dāng)ON

_L8C時(shí),△MON的周長(zhǎng)最小值,進(jìn)而可得結(jié)論.

解:如圖,過(guò)點(diǎn)。作OOLBC,OE_LAB于點(diǎn)。,E,連接08,

?.?點(diǎn)。為△ABC的內(nèi)心,

.?.。8是NABC的平分線,

OD=OE,

在Rt^DON和RtAEOM中,

fON=OM

ioE=OD,

.,.RtADO^RtAEOW(HL),

ZDON=NEOM,

:.NDOE=ZMON,

VZB=50°,

:.ZDOE=ZMON=130°,所以甲的判斷正確;

■:ADON迫/\EOM,

.??四邊形OMBN的面積=25/]。。,

?.?點(diǎn)。的位置固定,

四邊形OMBN的面積是定值,

所以乙的判斷錯(cuò)誤;

如圖,過(guò)點(diǎn)。作。于點(diǎn)F,

':ON=OM,/MON=130°,

;.NONM=25°,

:.MN=2NF=2ONCOSNONM=2ONCGS25°,

」.△MON的周長(zhǎng)=MN+2ON=2ONcos25°+2ON=2ON(cos25°+1),

.?.當(dāng)ON最小時(shí),即當(dāng)ON_L8c時(shí),△MON的周長(zhǎng)取得最小值,

所以丙的判斷正確.

綜上所述:說(shuō)法正確的是甲、丙.

故選:B.

二、填空題(本大題有3個(gè)小題,每小題有2個(gè)空,每空2分,共12分)

17.若“、人互為相反數(shù),則。+(b-2)的值為-2;若a、b互為倒數(shù),則1-2022叱

-2022.

【分析】根據(jù)。、〃互為相反數(shù),可以得到a+b=0,從而可以求得。+"-2)的值;根

據(jù)。、匕互為倒數(shù),可以得到帥=1,從而可以求得1-2022%的值.

解:???〃、b互為相反數(shù),

.\a+b=O9

/.a+(b-2)

=a+b-2

=0-2

=_2;

■a、一互為倒數(shù),

ab=lt

:.\-2022嗎

=1-2022」

=|-2022|

=2022;

故答案為:-2,2022.

18.如圖,在數(shù)軸原點(diǎn)。的右側(cè),一質(zhì)點(diǎn)。從距原點(diǎn)10個(gè)單位的點(diǎn)A處向原點(diǎn)方向跳動(dòng),

第一次跳動(dòng)到OA的中點(diǎn)Ai處,則點(diǎn)4表示的數(shù)為5;第二次從4點(diǎn)跳動(dòng)到

的中點(diǎn)A2處,第三次從A2點(diǎn)跳動(dòng)到04的中點(diǎn)A3處,如此跳動(dòng)下去,則第四次跳動(dòng)后,

該質(zhì)點(diǎn)到原點(diǎn)。的距離為4.

一8一

OA,AjAjA|A

【分析】04=10個(gè)單位,4是OA的中點(diǎn),故Ai表示的數(shù)是5,距離原點(diǎn)的距離就是5;

依次類推,四次跳動(dòng)后,距離原點(diǎn)的距離為iox-11=K6.

28

解:根據(jù)題意,Ai是。4的中點(diǎn),而。4=10,

所以4表示的數(shù)是10X-^=5;

A2表小的數(shù)是10XX-^-=10X—5";

222*

小表示的數(shù)是10x-y;

23

115

4表示的數(shù)是10X—T=10X^=-2-;

24168

故答案為:5;

o

19.(1)如圖1,正方形48CD的面積為a,延長(zhǎng)邊BC到點(diǎn)C”延長(zhǎng)邊C£>到點(diǎn)延

長(zhǎng)邊到點(diǎn)延長(zhǎng)邊到點(diǎn)使

D44,4B8"CG=BC,DD\=CD,AAt=DA,BBx=AB,

連接CQi,OiA,4田,BiG,得到四邊形4SCQ1,此時(shí)我們稱四邊形ABC。向外擴(kuò)

展了一次,若陰影部分的面積為0,則S尸4〃.(用含。的代數(shù)式表示)

(2)如圖2,任意四邊形A8CD面積為出像(1)中那樣將四邊形ABC。向外進(jìn)行兩

次擴(kuò)展,第一次擴(kuò)展成四邊形4SG9,第二次擴(kuò)展由四邊形ABiG5擴(kuò)展成四邊形

A2B2C2D2,若陰影部分面積為則S2=24,".(用含機(jī)的代數(shù)式表示)

%

圖1圖2

【分析】(1)分析圖形可發(fā)現(xiàn)規(guī)律,周邊陰影區(qū)域的總面積為中間四邊形A8CQ的面積

的4倍,根據(jù)規(guī)律計(jì)算即可;

(2)根據(jù)(1)中的規(guī)律進(jìn)行二次計(jì)算即可.

解:(1):正方形ABCQ的面積為a,CG=BC,DDi=CD,AAi^DA,BB\=AB,

這個(gè)三角形為全等的直角三角形,

:./\A\DDx,ADiCG,ACM,4

===

**?CC\BC\j~^fCD\f

.?.△GCDi的面積為?1x?X2G=a,

...陰影區(qū)域的面積Si為4a,

故答案為:4a;

(2)連AB,AC,BD,AD\,DC\,B\C,如圖:

?.,正方形ABC。的面積為機(jī),CC產(chǎn)BC,DD\^CD,AA^DA,BB、=AB,

SS

;?SABCD=ADCC1=-^AD1CC1>

SMAD=$ABAAI=/$ABI%,

ADjCCABtAAj—2S&BCD+2SABAD—2m,

+

同理,SAAtDDtACjBBt-^am

二可以得到如下規(guī)律,擴(kuò)展了一次后得到的四個(gè)小三角形的面積之和為原四邊形面積的4

倍,

S四邊形A”CD=5m,

111

根據(jù)得到的規(guī)律可以直接得出第二次擴(kuò)展后得到的四個(gè)大三角形的面積之和為20/,

第二次擴(kuò)展由四邊形ABCA擴(kuò)展成四邊形A2B2C2D2,的面積為25m,

...陰影部分面積為S2為24m.

故答案為:24m.

三、解答題(本大題有7個(gè)小題,共66分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟)

20.某校為實(shí)現(xiàn)垃圾分類投放,計(jì)劃購(gòu)進(jìn)大小兩種垃圾桶,大小垃圾桶的進(jìn)價(jià)分別為加元/

個(gè)、50元/個(gè),購(gòu)進(jìn)7個(gè)大垃圾桶和10個(gè)小垃圾桶.

(1)用含膽的代數(shù)式表示共付款多少元?

(2)若機(jī)=110,學(xué)校預(yù)算購(gòu)買垃圾桶資金為1200元是否夠用?為什么?

【分析】(1)共付款=大垃圾桶費(fèi)用+小垃圾桶費(fèi)用,即可列出代數(shù)式;

(2)算出機(jī)=110時(shí),購(gòu)買垃圾桶所付資金,再與1200比較即得答案.

解:(1)購(gòu)進(jìn)7個(gè)大垃圾桶和10個(gè)小垃圾桶,共付款7〃?+10X50=(7m+500)(元);

(2)當(dāng),*=110時(shí),7/W+500=7X110+500=1270(元),

V1200<1270,

A1200元不夠用.

21.按照如圖所示的程序計(jì)算:

(1)若輸入a=-9時(shí),求輸出結(jié)果力的值;

(2)當(dāng)輸入一個(gè)正數(shù)〃時(shí),輸出的結(jié)果人不大于-11,求輸入。的取值范圍.

【分析】(1)由程序圖,將。代入即可算出人的值;

(2)根據(jù)已知列出不等式,解出。的范圍即可.

解:(1)根據(jù)程序圖可知:

輸入a=-9時(shí),Z?=V9-(-9)=,/18=3^2:

(2)根據(jù)程序圖得:

輸入一個(gè)正數(shù)a時(shí),輸出的結(jié)果b=-3a+7,

,:b不大于-11,

/.-3a+7W-11,

解得“26.

22.某校七、八年級(jí)各有500名學(xué)生,為了解該校七、八年級(jí)學(xué)生對(duì)黨史知識(shí)的掌握情況,

從七、八年級(jí)學(xué)生中各隨機(jī)抽取15人進(jìn)行黨史知識(shí)測(cè)試,統(tǒng)計(jì)這部分學(xué)生的測(cè)試成績(jī)(成

績(jī)均為整數(shù),滿分10分,8分及8分以上為優(yōu)秀),相關(guān)數(shù)據(jù)統(tǒng)計(jì)整理如下:

七年級(jí)抽取學(xué)生的成績(jī):6,6,6,8,8,8,8,8,8,8,9,9,9,9,10.

七、八年級(jí)抽取學(xué)生的測(cè)試成績(jī)統(tǒng)計(jì)表

年級(jí)七年級(jí)八年級(jí)

平均數(shù)88

眾數(shù)a7

中位數(shù)

優(yōu)秀率80%60%

(1)填空:。=8,b=8.

(2)根據(jù)以上數(shù)據(jù),你認(rèn)為該校七、八年級(jí)中,哪個(gè)年級(jí)的學(xué)生黨史知識(shí)掌握得較好?

請(qǐng)說(shuō)明理由(寫出一條即可).

(3)請(qǐng)估計(jì)七、八年級(jí)學(xué)生對(duì)黨史知識(shí)掌握能夠達(dá)到優(yōu)秀的總?cè)藬?shù);

(4)現(xiàn)從七、八年級(jí)獲得10分的4名學(xué)生中隨機(jī)抽取2人參加市黨史知識(shí)競(jìng)賽,請(qǐng)用

列表法或畫樹(shù)狀圖法,求出被選中的2人恰好是七、八年級(jí)各1人的概率.

八年級(jí)抽取學(xué)生的測(cè)試成績(jī)條形統(tǒng)計(jì)圖

?人數(shù)

4

333

2

5678910分?jǐn)?shù)

【分析】(1)由眾數(shù)和中位數(shù)的定義求解即可;

(2)七、八年級(jí)的平均數(shù)和中位數(shù)相同,七年級(jí)的優(yōu)秀率大于八年級(jí)的優(yōu)秀率,即可求

解;

(3)由七、八年級(jí)的總?cè)藬?shù)分別乘以優(yōu)秀率,再相加即可;

(4)畫樹(shù)狀圖,共有12種等可能的結(jié)果,被選中的2人恰好是七、八年級(jí)各1人的結(jié)

果有6種,再由概率公式求解即可.

解:(1)由眾數(shù)的定義得:。=8,

八年級(jí)抽取學(xué)生的測(cè)試成績(jī)的中位數(shù)為8(分),

故答案為:8,8;

(2)七年級(jí)的學(xué)生黨史知識(shí)掌握得較好,理由如下:

?.?七年級(jí)的優(yōu)秀率大于八年級(jí)的優(yōu)秀率,

...七年級(jí)的學(xué)生黨史知識(shí)掌握得較好;

(3)500X80%+500X60%=700(人),

即估計(jì)七、八年級(jí)學(xué)生對(duì)黨史知識(shí)掌握能夠達(dá)到優(yōu)秀的總?cè)藬?shù)為700人;

(4)把七年級(jí)獲得10分的學(xué)生記為A,八年級(jí)獲得10分的學(xué)生記為8,

畫樹(shù)狀圖如圖:

開(kāi)始

共有12種等可能的結(jié)果,被選中的2人恰好是七、八年級(jí)各1人的結(jié)果有6種,

.?.被選中的2人恰好是七、八年級(jí)各1人的概率為占=《.

122

23.如圖,在平面直角坐標(biāo)系xOy中,函數(shù)>=區(qū)(x>0)的圖象與直線y=x-2交于點(diǎn)A

X

(4,m).

(1)求女,團(tuán)的值;

(2)已知點(diǎn)P(小n)(H>0),過(guò)點(diǎn)P作平行于x軸的直線,交直線y=x-2于點(diǎn)

過(guò)點(diǎn)尸作平行于),軸的直線,交函數(shù)y=K(x>0)的圖象于點(diǎn)N.

x

①當(dāng)〃=2時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說(shuō)明理由;

②若PNNPM,結(jié)合函數(shù)的圖象,直接寫出"的取值范圍.

【分析】(1)將4點(diǎn)代入y=x-2中即可求出機(jī)的值,然后將A的坐標(biāo)代入反比例函

數(shù)中即可求出%的值;

(2)①當(dāng)〃=2時(shí),分別求出M、N兩點(diǎn)的坐標(biāo)即可求出PM與PN的關(guān)系;

②由題意可知:P的坐標(biāo)為(”,〃),由于PN-PM,從而可知PN2,根據(jù)圖象可求

出n的范圍.

解:⑴將A(4,m)代入y=x-2,

.".ni=4-2—2,

???A(4,2),

將A(4,2)代入y=K,

x

?,.%=4X2=8,

(2)①當(dāng)〃=2時(shí),P(2,2),

令y=2,代入y=x-2,則x=4,

:.M(4,2),

:,PM=2,

令x=2代入y=@,則y=4,

x

:.N(2,4),

:.PN=2

:,PM=PN,

②尸(〃,〃),7?>0,即點(diǎn)P在直線y=x上,

過(guò)點(diǎn)P作平行于1軸的直線,交直線>=1-2于點(diǎn)M,

;?PM=2,

。:PN、PM,

即PN22,

o

-:PN=\--n\

nf

o

:.\—~n\^29

n

,0VMW2或心4.

24.如圖,AB是半圓0的直徑;。是半圓。上不同于A、8兩點(diǎn)的任意一點(diǎn);C是半圓0

上一動(dòng)點(diǎn),AC與8。相交于點(diǎn)尸,BE是半圓。所在圓的切線,與AC的延長(zhǎng)線相交于點(diǎn)

E.

(1)若AO=BC,求證:△CBAgZVMB;

(2)若BE=BF,ZmC=30°,AB=8.求5桶彩88;(答案保留n)

(3)若48=8,,為AC的中點(diǎn),點(diǎn)C從8移動(dòng)到A時(shí),請(qǐng)直接寫出點(diǎn),移動(dòng)的長(zhǎng)度.(答

案保留n)

【分析】(1)由直徑所對(duì)的圓周角是直角可得/4QB=NBCA=90°,再根據(jù)乩證明

即可;

(2)根據(jù)等腰三角形的性質(zhì)得NEBC=30°,ZE=60",由BE是半圓。所在的切線

得/ABE=90°,可求/BAE=30°,連接0C,得NCOB=60°,再根據(jù)扇形面積計(jì)算

公式可得答案;

(3)根據(jù)點(diǎn),移動(dòng)的長(zhǎng)度是以0A為直徑的圓的周長(zhǎng)的一半求解即可.

【解答】(1)證明:是半圓。的直徑,

;./ADB=NBCA=90°,

在RtAADB和RtABCA中,

[AB=AB

1AD=BC'

(HL);

(2)解:連接OC,

':BE=BF,由(1)知BC_LEF,

:.ZCBF=ZEBC,

':ZCBF=ZDAC=30°,

AZEBC=30°,

:.ZE=90°-/EBC=60°,

???BE是半圓。所在圓的切線,

AZABE=90°,

AZE+ZBAE=90°,

:.ZBAE=90°-ZE=30°,

AZCOB=2ZBAE=60Q,

?c-60HX42_8H

???扇形-----------------------------

3603

(3)解:連接04,

?.?”為AC的中點(diǎn),

/.OH1AC,

在以O(shè)A為直徑的圓上運(yùn)動(dòng),

當(dāng)點(diǎn)C在8點(diǎn)時(shí),點(diǎn)”與點(diǎn)O重合,

當(dāng)點(diǎn)C在A點(diǎn)時(shí),點(diǎn)H與點(diǎn)A重合,

所以,點(diǎn)H移動(dòng)的長(zhǎng)度是以O(shè)A為直徑的圓的周長(zhǎng)一半,即4=由1*4=211.

25.某公司購(gòu)進(jìn)一批受環(huán)境影響較大的商品,需要在特定的環(huán)境中才能保存,已知該商品成

本y(元/件)與保存的時(shí)間第x(天)之間的關(guān)系滿足y=f-4x+100,該商品售價(jià)〃(元

/件)與保存時(shí)間第x(天)之間滿足一次函數(shù)關(guān)系,其對(duì)應(yīng)數(shù)據(jù)如表:

X(天)......57......

P(元/件)......248264......

(1)求商品的售價(jià)p(元/件)與保存時(shí)間第x(天)之間的函數(shù)關(guān)系式;

(2)求保存第幾天時(shí),該商品不賺也不虧;

(3)請(qǐng)你幫助該公司確定在哪一天賣出,每件商品能獲得最大利潤(rùn),此時(shí)每件商品的售

價(jià)是多少?

【分析】(1)設(shè)0=丘+〃,利用待定系數(shù)法求解即可;

(2)根據(jù)售價(jià)等于成本列出方程并求解即可;

(3)設(shè)每件商品所獲利潤(rùn)為w元,依題意得w關(guān)于x的二次函數(shù),寫成頂點(diǎn)式,按照

二次函數(shù)的性質(zhì)可得出答案.

解:(1)設(shè)p=kx+b,將x=5,p=248和x=7,p=264分別代入表達(dá)式,

4Hf5k+b=248,

l7k+b=264.

解得上孔

lb=208.

.*./?=8x+208.

(2)依題意,得方程:

8犬+208=/-4x+100.

整理方程,得x2-12x-108-0.

解得X1=18,X2=-6(不合題意,舍去).

答:該商品保存第18天時(shí),不賺也不虧.

(3)設(shè)每件商品所獲利潤(rùn)為w元,依題意,得:

w=8x+208-(9-4x+lOO)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論