版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
H62SPCChapter5SingleLoopFeedbackSystemandRootsoftheCharacteristicEquationTransferFunctionConvenientrepresentationofalinear,dynamicmodel.Atransferfunction(TF)relatesoneinputandoneoutput:Thefollowingterminologyisused:xinputforcingfunction“cause”youtputresponse“effect”InverseLaplaceTransform
Thefollowingtransformallowsustomovebackintothetimedomaintisaconstantforthepurposeofintegration‘s’isacomplexvariableandthereforemakestheintegrationprocesscomplicated-ajobformathematicians!Fortunately,itispossibletousetablesofinverseLaplacetransformstoconvertbackintothetimedomainwithouthavingtocomputethecomplexintegrals.Thisisthemethodthatweuse.LaplaceTransformtablesPartialFractions:Revision
Findthetransformfunctionh(t)/H(s)Steps:KeepallresistancesRthesameReplaceallvoltagesv(t)
byV(s)Replaceallcurrentsi(t)byI(s)ReplaceallinductancesLbysL
ReplaceallcapacitorsCby1/sC
ApplyKirchhoff’sLawstodetermine fromwhichthefrequencyresponse,amplitudeand phaseresponsescanbeobtained.Kirchoff’sCurrentLawsConsidertheKCLintimedomain:ApplytheLaplacetransform:Kirchoff’sVoltageLawsConsidertheKVLintimedomain:ApplytheLaplacetransform:BasicSingleLoopFeedbackSystemG(s)–Forwardpathtransferfunction;
H(s)–FeedbackpathtransferfunctionC(s)–ControlledoutputsignalR(s)–ReferenceinputsignalE(s)–ActuatingerrorsignalC(s)R(s)G(s)+-H(s)E(s)ClosedLoopTransferFunctionC(s)R(s)G(s)+-H(s)E(s)
ClosedloopTransferFunction(CLTF)Feedback:PositiveandNegativePositiveFeedbackSystemsMorebegetsmoreLessbegetsless.Examples?NegativeFeedbackSystemsMorebegetslessLessbegetsmore.Examples?TransferFunctionC(s)R(s)G(s)+-H(s)
Frombefore:Thebelowequationisastheclosed-looptransferfunctionofthissystem(CLTF):UnityFeedbackControlSystemC(s)R(s)G(s)+-E(s)G(s)–Forwardpathtransferfunction; Open-looptransferfunction C(s)–ControlledoutputsignalR(s)–ReferenceinputsignalE(s)–ActuatingerrorsignalWhatisitsCLTF???????CharacteristicEquationofatransferfunctionC(s)R(s)G(s)+-H(s)
Frombefore:Thecharacteristicequationofalinearsystemisobtainedbyequatingthedenominatorpolynomialofthetransferfunctiontozero,thusthecharacteristicequationofthissystemis:
Therootsofthisequationdeterminetheresponseofthesystemtochangesinthereference,R(s)TheserootsareZEROS!1stand2ndsystem:TransferfunctionandcharacteristicEquationWriteoutthetransferfunctionandcharacteristicequationsforbothcircuits!ResponsetochangesininputtimeVoltage10VOnetypeofresponse(2ndOrder)Anothertypeofresponse(1stOrder)Referencevalue:Responsetoastepchangeininput,R(s):TheshapeofthisresponseisdeterminedbyfindingtherootsoftheCharacteristicEquationExampleIC(s)R(s)
Oursystem:OurInput:Astepinputof10unitstime10
Provethisyourself!
OurOutput:InputTransferFunction
Solvingtheseweget:A=10,B=-10,C=-20 [Proveyourself!]
NowweneedtomanipulatethisabitsothatwecanuseInverseLaplaceTransformTables
ThisoneiseasyThisoneneedsabitofworkExampleII
ExampleIII
1
FromInverseLaplaceTransformTablesComparingthesolutionwiththeCharacteristicEquation
Ourcharacteristicequationwas:
C(s)R(s)
Notethatc(t)hastheexponentialdecayrateequaltotherealpartoftheroots(-1),andthattheoscillatorypartc(t)hasafrequencyequaltothecomplexpartoftheroots(2π/2=π)ThisiswhythedenominatorofthetransferfunctioniscalledtheCharacteristicEquation
-Therootsofitdeterminetheshapeofthesystemresponse.RealandComplexRootsofthecharacteristicequationRealRootsoftheC.E
Thisgivesrisetoanexponentialdecaycomponentinthetimedomain.i.e.K=Constant
=DecayrateKf(t)timeComplexRoots
Thisgivesrisetoatransientterminthetimedomainofthetype:
Hence,forapairofcomplexroots,definedbys2+as+b=0,thedecayrateandthedampedfrequencycanbefoundby:
BOTH
anddeterminetheresponseofthesystemResponseExamplesttttSame,differentSame,differentComplexRoots:Relationships
Ifwecomparethesetwoforms:
Comparingthecoefficients:
ComplexRoots:RelationshipsII
ProveYourself!Example:Second-orderCircuit
InitialConditions
Zero-inputResponsetocharacteristicequation
Rootsofthesecond-ordersystem
PracticalCases:
CaseA:tworeal,unequalroots
CaseB:tworeal,equalrootsCaseA:IF(????)2?4????=0,tworeal,equalroots(??1=??2=???)R=4Kohm??1=??2=?2000Correspondingly,thetime-domainsolutionshouldbe:??????=??1???2000??+??2?????2000??;??≥0Takingtheinitialconditionsintotheconsideration:????0=15=??1??????(0)????=??0??
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 員工思想意識(shí)培訓(xùn)
- 員工工作能力提升培訓(xùn)
- 員工崗位安全技能培訓(xùn)
- 教材和課件定期更新、審核制度
- 護(hù)士職業(yè)安全防護(hù)制度
- 2026午福馬新年春節(jié)美陳設(shè)計(jì)包裝方案
- 2025年河北省定向華中師范大學(xué)選調(diào)生筆試真題
- 異常工況培訓(xùn)制度
- 員工培訓(xùn)系統(tǒng)模型
- 員工培訓(xùn)禮儀綜合
- (一模)2025~2026學(xué)年佛山市高三教學(xué)質(zhì)量檢測(cè)(一)政治試卷(含答案)
- 車(chē)輛駕駛?cè)私逃嘤?xùn)制度
- 中國(guó)話語(yǔ)體系構(gòu)建的全球傳播效果課題申報(bào)書(shū)
- 學(xué)堂在線 雨課堂 學(xué)堂云 極區(qū)航海導(dǎo)航保障 期末考試答案
- 安全文明施工措施方案
- 融資租賃實(shí)際利率計(jì)算表
- 民爆物品倉(cāng)庫(kù)安全操作規(guī)程
- von frey絲K值表完整版
- 勾股定理復(fù)習(xí)導(dǎo)學(xué)案
- 第二章單自由度系統(tǒng)振動(dòng)
- GB/T 17880.6-1999鉚螺母技術(shù)條件
評(píng)論
0/150
提交評(píng)論