2025屆云南省澄江縣第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第1頁(yè)
2025屆云南省澄江縣第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第2頁(yè)
2025屆云南省澄江縣第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第3頁(yè)
2025屆云南省澄江縣第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第4頁(yè)
2025屆云南省澄江縣第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆云南省澄江縣第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則的值為()A. B.0C.1 D.2.過(guò)雙曲線的左焦點(diǎn)作x軸的垂線交曲線C于點(diǎn)P,為右焦點(diǎn),若,則雙曲線的離心率為()A. B.C. D.3.如圖,在三棱錐S—ABC中,點(diǎn)E,F(xiàn)分別是SA,BC的中點(diǎn),點(diǎn)G在棱EF上,且滿(mǎn)足,若,,,則()A. B.C. D.4.青少年視力被社會(huì)普遍關(guān)注,為了解他們的視力狀況,經(jīng)統(tǒng)計(jì)得到圖中右下角名青少年的視力測(cè)量值(五分記錄法)的莖葉圖,其中莖表示個(gè)位數(shù),葉表示十分位數(shù).如果執(zhí)行如圖所示的算法程序,那么輸出的結(jié)果是()A. B.C. D.5.已知等差數(shù)列為其前項(xiàng)和,且,且,則()A.36 B.117C. D.136.雙曲線的兩個(gè)焦點(diǎn)坐標(biāo)是()A.和 B.和C.和 D.和7.已知雙曲線,過(guò)左焦點(diǎn)且與軸垂直的直線與雙曲線交于、兩點(diǎn),若弦的長(zhǎng)恰等于實(shí)鈾的長(zhǎng),則雙曲線的離心率為()A. B.C. D.8.如圖,雙曲線,是圓的一條直徑,若雙曲線過(guò),兩點(diǎn),且離心率為,則直線的方程為()A. B.C. D.9.已知函數(shù),則曲線在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形的面積是()A B.C. D.10.在平面直角坐標(biāo)系xOy中,雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)M是雙曲線右支上一點(diǎn),,且,則雙曲線的離心率為()A. B.C. D.11.設(shè)雙曲線的左、右頂點(diǎn)分別為、,點(diǎn)在雙曲線上第一象限內(nèi)的點(diǎn),若的三個(gè)內(nèi)角分別為、、且,則雙曲線的漸近線方程為()A. B.C. D.12.在等比數(shù)列{an}中,a1=8,a4=64,則a3等于()A.16 B.16或-16C.32 D.32或-32二、填空題:本題共4小題,每小題5分,共20分。13.已知正方形的邊長(zhǎng)為2,對(duì)部分以為軸進(jìn)行翻折,翻折到,使二面角的平面角為直二面角,則___________.14.直線過(guò)拋物線的焦點(diǎn)F,且與C交于A,B兩點(diǎn),則___________.15.若函數(shù)是上的增函數(shù),則實(shí)數(shù)的取值范圍是__________.16.已知等差數(shù)列的前項(xiàng)和為,則數(shù)列的前2022項(xiàng)的和為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某市對(duì)排污水進(jìn)行綜合治理,征收污水處理費(fèi),系統(tǒng)對(duì)各廠一個(gè)月內(nèi)排出的污水量x噸收取的污水處理費(fèi)y元,運(yùn)行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式;(2)求排放污水150噸的污水處理費(fèi)用.18.(12分)如圖所示,四棱錐的底面為矩形,,,過(guò)底面對(duì)角線作與平行的平面交于點(diǎn)(1)求二面角的余弦值;(2)求與所成角的余弦值;(3)求與平面所成角的正弦值19.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:的左,右頂點(diǎn)分別為A、B,點(diǎn)F是橢圓的右焦點(diǎn),,(1)求橢圓C的方程;(2)不過(guò)點(diǎn)A的直線l交橢圓C于M、N兩點(diǎn),記直線l、AM、AN的斜率分別為k、、.若,證明直線l過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo)20.(12分)已知函數(shù)在處的切線與直線平行(1)求值,并求此切線方程;(2)證明:21.(12分)已知直線l過(guò)點(diǎn)A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點(diǎn)P,Q,且|PQ|=8,求圓C方程22.(10分)如圖,在三棱柱中,側(cè)棱垂直于底面,分別是的中點(diǎn)(1)求證:平面平面;(2)求證:平面;(3)求三棱錐體積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求導(dǎo),代入,求出,進(jìn)而求出.【詳解】,則,即,解得:,故,所以故選:B2、D【解析】由題知是等腰直角三角形,,又根據(jù)通徑的結(jié)論知,結(jié)合可列出關(guān)于的二次齊次式,即可求解離心率.【詳解】由題知是等腰直角三角形,且,,又,,即,,,即,解得,,.故選:D.3、D【解析】利用空間向量的加、減運(yùn)算即可求解.詳解】由題意可得故選:D4、B【解析】依題意該程序框圖是統(tǒng)計(jì)這12名青少年視力小于等于的人數(shù),結(jié)合莖葉圖判斷可得;【詳解】解:根據(jù)程序框圖可知,該程序框圖是統(tǒng)計(jì)這12名青少年視力小于等于的人數(shù),由莖葉圖可知視力小于等于的有5人,故選:B5、B【解析】根據(jù)等差數(shù)列下標(biāo)的性質(zhì),,進(jìn)而根據(jù)條件求出,然后結(jié)合等差數(shù)列的求和公式和下標(biāo)性質(zhì)求得答案.【詳解】由題意,,即為遞增數(shù)列,所以,又,又,聯(lián)立方程組解得:.于是,.故選:B.6、C【解析】由雙曲線標(biāo)準(zhǔn)方程可得到焦點(diǎn)所在軸及半焦距的長(zhǎng),進(jìn)而得到兩個(gè)焦點(diǎn)坐標(biāo).【詳解】雙曲線中,,則又雙曲線焦點(diǎn)在y軸,故雙曲線的兩個(gè)焦點(diǎn)坐標(biāo)是和故選:C7、B【解析】求出,進(jìn)而求出,之間的關(guān)系,即可求解結(jié)論【詳解】解:由題意,直線方程為:,其中,因此,設(shè),,,,解得,得,,弦的長(zhǎng)恰等于實(shí)軸的長(zhǎng),,,故選:B8、D【解析】由離心率求得,設(shè)出兩點(diǎn)坐標(biāo)代入雙曲線方程相減求得直線斜率與的關(guān)系得結(jié)論【詳解】由題意,則,即,由圓方程知,設(shè),,則,,又,兩式相減得,所以,直線方程為,即故選:D9、B【解析】根據(jù)導(dǎo)數(shù)的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B10、A【解析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【詳解】因?yàn)?,,所以在中,邊上的中線等于的一半,所以.因?yàn)椋钥稍O(shè),,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A11、B【解析】設(shè)點(diǎn),其中,,求得,且有,,利用兩角和的正切公式可求得的值,進(jìn)而可求得的值,即可得出該雙曲線的漸近線的方程.【詳解】易知點(diǎn)、,設(shè)點(diǎn),其中,,且,,且,,,所以,,,因?yàn)?,所以,,則,因此,該雙曲線漸近線方程為.故選:B.12、C【解析】首先根據(jù)a4=a1q3,求得q=2,再由a3=即可得解.【詳解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】根據(jù),則,根據(jù)條件求得向量夾角即可求得結(jié)果.【詳解】由題知,,取的中點(diǎn)O,連接,如圖所示,則,又二面角的平面角為直二面角,則,又,則,為等邊三角形,從而,則,故答案為:-214、8【解析】由題意,求出,然后聯(lián)立直線與拋物線方程,由韋達(dá)定理及即可求解.【詳解】解:因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,又直線過(guò)拋物線的焦點(diǎn)F,所以,拋物線的方程為,由,得,所以,所以.故答案為:8.15、【解析】由題意知在上恒成立,從而結(jié)合一元二次不等式恒成立問(wèn)題,可列出關(guān)于的不等式,進(jìn)而可求其取值范圍.【詳解】解:由題意知,知在上恒成立,則只需,解得.故答案為:.【點(diǎn)睛】本題考查了不等式恒成立問(wèn)題,考查了運(yùn)用導(dǎo)數(shù)探究函數(shù)的單調(diào)性.一般地,由增函數(shù)可得導(dǎo)數(shù)不小于零,由減函數(shù)可得導(dǎo)數(shù)不大于零.對(duì)于一元二次不等式在上恒成立問(wèn)題,如若在上恒成立,可得;若在上恒成立,可得.16、【解析】先設(shè)等差數(shù)列的公差為,根據(jù)題中條件,求出首項(xiàng)和公差,得出前項(xiàng)和,再由裂項(xiàng)相消的方法,即可求出結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)椋?,所以,解得,因此,所以,所以?shù)列的前2022項(xiàng)的和為.故答案:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)1400(元).【解析】(1)根據(jù)已知條件即可容易求得函數(shù)關(guān)系式;(2)根據(jù)(1)中所求函數(shù)關(guān)系式,令,求得函數(shù)值即可.【小問(wèn)1詳解】根據(jù)題意,得:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.即.【小問(wèn)2詳解】因?yàn)?,故,故該廠應(yīng)繳納污水處理費(fèi)1400元.18、(1);(2);(3).【解析】(1)設(shè),連接、,證明出平面,推導(dǎo)出為的中點(diǎn),然后以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值;(2)利用空間向量法可求得與所成角的余弦值;(3)利用空間向量法可求得與平面所成角的正弦值.【小問(wèn)1詳解】解:設(shè),則為、的中點(diǎn),連接、,因?yàn)槠矫妫矫?,平面平面,則,因?yàn)闉榈闹悬c(diǎn),則為的中點(diǎn),因?yàn)椋瑸榈闹悬c(diǎn),則,同理可證,,平面,,,則,,以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個(gè)法向量為,.由圖可知,二面角的平面角為銳角,因此,二面角的余弦值為.【小問(wèn)2詳解】解:,,,因此,與所成角的余弦值為.【小問(wèn)3詳解】解:,,因此,與平面所成角的正弦值為.19、(1);(2)證明見(jiàn)解析,(-5,0).【解析】(1)寫(xiě)出A、B、F的坐標(biāo),求出向量坐標(biāo),根據(jù)向量的關(guān)系即可列出方程組,求得a、b、c和橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線l的方程為y=kx+m,,.聯(lián)立直線l與橢圓方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,求出,根據(jù)即可求得k和m的關(guān)系,即可證明直線過(guò)定點(diǎn)并求出該定點(diǎn).【小問(wèn)1詳解】由題意,知A(-a,0),B(a,0),F(xiàn)(c,0)∵,∴解得從而b2=a2-c2=3∴橢圓C的方程;【小問(wèn)2詳解】設(shè)直線l的方程為y=kx+m,,∵直線l不過(guò)點(diǎn)A,因此-2k+m≠0由得時(shí),,,∴由,可得3k=m-2k,即m=5k,故l的方程為y=kx+5k,恒過(guò)定點(diǎn)(-5,0).20、(1);;(2)證明見(jiàn)解析.【解析】(1)根據(jù)導(dǎo)數(shù)幾何意義可知,解方程求得,進(jìn)而得到切線方程;(2)當(dāng)時(shí),由,知不等式成立;當(dāng)時(shí),令,利用導(dǎo)數(shù)可求得在上單調(diào)遞增,從而得到,由此可得結(jié)論.【小問(wèn)1詳解】,,在處的切線與直線平行,即切線斜率為,,解得:,,,所求切線方程為:,即;【小問(wèn)2詳解】要證,即證;①當(dāng)時(shí),,,,即,;②當(dāng)時(shí),令,,,當(dāng)時(shí),,,,,即,在上單調(diào)遞增,,在上單調(diào)遞增,,即在上恒成立;綜上所述:.【點(diǎn)睛】思路點(diǎn)睛:本題第二問(wèn)考查利用導(dǎo)數(shù)證明不等式的問(wèn)題,解題的基本思路是將問(wèn)題轉(zhuǎn)化為函數(shù)最值的求解問(wèn)題;通過(guò)構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)最值的方法可確定恒成立,從而得到所證結(jié)論.21、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關(guān)系得過(guò)直線l的斜率,由點(diǎn)斜式化簡(jiǎn)即可求解l的一般式方程;(2)結(jié)合勾股定理建立弦心距(由點(diǎn)到直線距離公式求解),半弦長(zhǎng),圓半徑的基本關(guān)系,解出,即可求解圓C的方程【小問(wèn)1詳解】因?yàn)橹本€l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,即3x+4y+5=0,因此直線l的一般式方程為3x+4y+5=0;【小問(wèn)2詳解】圓C:x2+y2=m的圓心為(0,0),半徑為,圓心(0,0)到直線l的距離為,則半徑滿(mǎn)足m=42+12=17,即m=17,所以圓C:x2+y2=1722、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)【解析】(1)由直線與平面垂直證明直線與平行的垂直;(2)證明直線與平面平行;(3)求三棱錐的體積就用體積公式.(1)在三棱柱中,底面ABC,所以AB,又因?yàn)锳B⊥BC,所以AB⊥平面,因?yàn)锳B平面,所以平面平面

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論