山東省武城縣第一中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第1頁
山東省武城縣第一中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第2頁
山東省武城縣第一中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第3頁
山東省武城縣第一中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第4頁
山東省武城縣第一中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省武城縣第一中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在數(shù)列中,,則()A.2 B.C. D.2.如果在一實驗中,測得的四組數(shù)值分別是,則y與x之間的回歸直線方程是()A. B.C. D.3.現(xiàn)有4本不同的書全部分給甲、乙、丙3人,每人至少一本,則不同的分法有()A.12種 B.24種C.36種 D.48種4.設(shè)函數(shù)在R上可導(dǎo),則()A. B.C. D.以上都不對5.德國數(shù)學(xué)家高斯是近代數(shù)學(xué)奠基者之一,有“數(shù)學(xué)王子”之稱,在歷史上有很大的影響.他幼年時就表現(xiàn)出超人的數(shù)學(xué)天才,10歲時,他在進行的求和運算時,就提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對應(yīng)項的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知數(shù)列,則()A.96 B.97C.98 D.996.已知拋物線,為坐標(biāo)原點,以為圓心的圓交拋物線于、兩點,交準(zhǔn)線于、兩點,若,,則拋物線方程為()A. B.C. D.7.雙曲線的離心率的取值范圍為,則實數(shù)的取值范圍為()A. B.C. D.8.過點P(2,1)作直線l,使l與雙曲線-y2=1有且僅有一個公共點,這樣的直線l共有A.1條 B.2條C.3條 D.4條9.已知雙曲線的左、右焦點分別為,,過點作直線交雙曲線的右支于A,B兩點.若,則雙曲線的離心率為()A. B.C. D.10.在空間直角坐標(biāo)系中,若,,則點B的坐標(biāo)為()A.(3,1,﹣2) B.(-3,1,2)C.(-3,1,-2) D.(3,-1,2)11.若直線與直線垂直,則()A.6 B.4C. D.12.設(shè)數(shù)列、都是等差數(shù)列,若,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記為等差數(shù)列的前n項和.若,則_________.14.已知函數(shù),則________.15.兩條平行直線與的距離是__________16.若p:存在,使是真命題,則實數(shù)a的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在邊長為4的等邊三角形ABC中,D,E,F(xiàn)分別是AB,AC,BC的中點,沿DE把折起,得到如圖2所示的四棱錐.(1)證明:平面.(2)若二面角的大小為60°,求平面與平面的夾角的大小.18.(12分)已知函數(shù)在處取得極值(1)若對任意正實數(shù),恒成立,求實數(shù)的取值范圍;(2)討論函數(shù)的零點個數(shù)19.(12分)已知函數(shù)(其中為自然對數(shù)底數(shù))(1)討論函數(shù)的單調(diào)性;(2)當(dāng)時,若恒成立,求實數(shù)的取值范圍.20.(12分)如圖,在四棱錐中,平面,四邊形是菱形,,,是的中點(1)求證:;(2)已知二面角的余弦值為,求與平面所成角的正弦值21.(12分)在中,內(nèi)角,,的對邊分別為,,.若,且.(1)求角的大?。唬?)若的面積為,求的最大值.22.(10分)已知雙曲線與雙曲線的漸近線相同,且經(jīng)過點.(1)求雙曲線的方程;(2)已知雙曲線的左右焦點分別為,直線經(jīng)過,傾斜角為與雙曲線交于兩點,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)遞推關(guān)系,代入數(shù)據(jù),逐步計算,即可得答案.【詳解】由題意得,令,可得,令,可得,令,可得,令,可得.故選:D2、B【解析】根據(jù)已知數(shù)據(jù)求樣本中心點,由樣本中心點在回歸直線上,將其代入各選項的回歸方程驗證即可.【詳解】由題設(shè),,因為回歸直線方程過樣本點中心,A:,排除;B:,滿足;C:,排除;D:,排除.故選:B3、C【解析】先把4本書按2,1,1分為3組,再全排列求解.【詳解】先把4本書按2,1,1分為3組,再全排列,則有種分法,故選:C4、B【解析】根據(jù)極限的定義計算【詳解】由題意故選:B5、C【解析】令,利用倒序相加原理計算即可得出結(jié)果.【詳解】令,,兩式相加得:,∴,故選:C6、C【解析】設(shè)圓的半徑為,根據(jù)已知條件可得出關(guān)于的方程,求出正數(shù)的值,即可得出拋物線的方程.【詳解】設(shè)圓的半徑為,拋物線的準(zhǔn)線方程為,由勾股定理可得,因為,將代入拋物線方程得,可得,不妨設(shè)點,則,所以,,解得,因此,拋物線的方程為.故選:C.7、C【解析】分析可知,利用雙曲線的離心率公式可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.8、B【解析】利用幾何法,結(jié)合雙曲線的幾何性質(zhì),得出符合條件的結(jié)論.【詳解】由雙曲線的方程可知其漸近線方程為y=±x,則點P(2,1)在漸近線y=x上,又雙曲線的右頂點為A(2,0),如圖所示.滿足條件的直線l有兩條:x=2,y-1=-(x-2)【點睛】該題考查的是有關(guān)直線與雙曲線的公共點有一個的條件,結(jié)合雙曲線的性質(zhì),結(jié)合圖形,得出結(jié)果,屬于中檔題目.9、A【解析】根據(jù)給定條件結(jié)合雙曲線定義求出,,再借助余弦定理求出半焦距c即可計算作答.【詳解】因,令,,而雙曲線實半軸長,由雙曲線定義知,,而,于是可得,在等腰中,,令雙曲線半焦距為c,在中,由余弦定理得:,而,,,解得,所以雙曲線的離心率為.故選:A【點睛】方法點睛:求雙曲線的離心率的方法:(1)定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;(2)齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;(3)特殊值法:通過取特殊值或特殊位置,求出離心率.10、C【解析】利用點的坐標(biāo)表示向量坐標(biāo),即可求解.【詳解】設(shè),,,所以,,,解得:,,,即.故選:C11、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.12、A【解析】設(shè)等差數(shù)列的公差為,根據(jù)數(shù)列是等差數(shù)列可求得,由此可得出,進而可求得所求代數(shù)式的值.【詳解】設(shè)等差數(shù)列的公差為,即,由于數(shù)列也為等差數(shù)列,則,可得,即,可得,即,解得,所以,數(shù)列為常數(shù)列,對任意的,,因此,.故選:A.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列基本量的求解,通過等差數(shù)列定義列等式求解公差是解題的關(guān)鍵,另外,在求解有關(guān)等差數(shù)列基本問題時,可充分利用等差數(shù)列的定義以及等差中項法來求解.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據(jù)等差數(shù)列前項和的公式及等差數(shù)列的性質(zhì)即可得出答案.【詳解】解:,所以.故答案為:5.14、2【解析】根據(jù)導(dǎo)數(shù)的計算法則計算即可.【詳解】∵,∴,∴∴.故答案為:2.15、5【解析】根據(jù)兩平行直線,可求得a值,根據(jù)兩平行線間距離公式,即可得答案.【詳解】因為兩平行直線與,所以,解得,所以兩平行線的距離.故答案為:516、【解析】將問題分離參數(shù)得到存在,使成立,可得結(jié)論.【詳解】存在,使,即存在,使,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由結(jié)合線面平行的判定即可推理作答.(2)取DE的中點M,連接,F(xiàn)M,證明平面平面,再建立空間直角坐標(biāo)系,借助空間向量推理、計算作答.【小問1詳解】在中,因為E,F(xiàn)分別是AC,BC的中點,所以,則圖2中,,而平面,平面,所以平面.【小問2詳解】依題意,是正三角形,四邊形是菱形,取DE的中點M,連接,F(xiàn)M,如圖,則,,即是二面角的平面角,,取中點N,連接,則有,在中,由余弦定理得:,于是有,,即,而,,,平面,則平面,又平面,從而有平面平面,因平面平面,平面,因此,平面,過點N作,則兩兩垂直,以點N為原點,射線分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)平面的法向量,則,令,得,設(shè)平面的法向量,則,令,得,顯然有,即,所以平面與平面的夾角為.【點睛】方法點睛:利用向量法求二面角:(1)找法向量,分別求出兩個半平面所在平面的法向量,然后求得法向量的夾角,結(jié)合圖形得到二面角的大?。?2)找與交線垂直的直線的方向向量,分別在二面角的兩個半平面內(nèi)找到與交線垂直且以垂足為起點的直線的方向向量,則這兩個向量的夾角就是二面角的平面角18、(1)(2)答案見解析.【解析】(1)根據(jù)極值點求出,再利用導(dǎo)數(shù)求出的最大值,將不等式恒成立化為最大值成立可求出結(jié)果;(2)利用導(dǎo)數(shù)求出函數(shù)的極大、極小值,結(jié)合函數(shù)的圖象分類討論可得結(jié)果.【小問1詳解】函數(shù)的定義域為,因為,且在處取得極值,所以,即,得,此時,當(dāng)時,,為增函數(shù);當(dāng)時。,為減函數(shù),所以在處取得極大值,也是最大值,最大值為,因為對任意正實數(shù),恒成立,所以,得.【小問2詳解】,,由,得,由,得或,所以在上為增函數(shù),在上為減函數(shù),在上為增函數(shù),所以在時取得極大值為,在時取得極小值為,因為當(dāng)大于0趨近于0時,趨近于負(fù)無窮,當(dāng)趨近于正無窮時,趨近于正無窮,所以當(dāng),即時,有且只有一個零點;當(dāng),即時,有且只有兩個零點;當(dāng),即時,有且只有三個零點;當(dāng),即時,有且只有兩個零點;當(dāng),即時,有且只有一個零點.綜上所述:當(dāng)或時,有且只有一個零點;當(dāng)或時,有且只有兩個零點;當(dāng)時有且只有三個零點.19、(1)答案見解析(2)【解析】(1),進而分,,三種情況討論求解即可;(2)由題意知在上恒成立,故令,再根據(jù)導(dǎo)數(shù)研究函數(shù)的最小值,注意到使,進而結(jié)合函數(shù)隱零點求解即可.【小問1詳解】解:①,在上單調(diào)增;②,令,單調(diào)減單調(diào)增;③,單調(diào)增單調(diào)減.綜上,當(dāng)時,在上單調(diào)增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】解:由題意知在上恒成立,令,,單調(diào)遞增∵,∴使得,即單調(diào)遞減;單調(diào)遞增,令,則在上單調(diào)增,∴實數(shù)的取值范圍是20、(1)證明見解析;(2).【解析】(1)由菱形及線面垂直的性質(zhì)可得、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)構(gòu)建空間直角坐標(biāo)系,設(shè),結(jié)合已知確定相關(guān)點坐標(biāo),進而求面、面的法向量,結(jié)合已知二面角的余弦值求出參數(shù)t,再根據(jù)空間向量夾角的坐標(biāo)表示求與平面所成角的正弦值【小問1詳解】由平面,平面,則,又是菱形,則,又,所以平面,平面所以E.【小問2詳解】分別以,,為,,軸正方向建立空間直角坐標(biāo)系,設(shè),則,由(1)知:平面的法向量為,令面的法向量為,則,令,可得,因為二面角的余弦值為,則,可得,則,設(shè)與平面所成的角為,又,,所以.21、(1);(2).【解析】(1)由,等式右邊可化為余弦定理形式,根據(jù)求角即可(2)由余弦定理結(jié)合均值不等式可求出的最大值,即可求出三角面積的最大值.【詳解】(1)由得:,即:.∴,又,∴.(2)由,當(dāng)且僅當(dāng)?shù)忍柍闪?得:..【點睛】本題主要考查了余弦定理,均值不等式,三角形面積公式,屬于中檔題.22、(1);(2).【解析】(1)由兩條雙曲線有共同漸近線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論