版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
H62SPCChapter3:LaplaceTransform2016-2017BlockDiagramReductionTechniquesIBlocksinCascadeKeyPoint:Thekeythingforallblockdiagrammanipulationandreductionisthatthefunctionforthesystemoutput(orthetotalsystemtransferfunction)shouldneverchangeasaresultofblockdiagrammanipulationG1xy
G2u
yG1G2xBlockDiagramReductionTechniquesIIMovingatakeoffpointaheadofablockMovingatakeoffpointbehindablockYXZGYXZGGy=Gxz=Gxy=Gxz=GxYXZGYXG
Zy=Gxz=xy=Gx
BlockDiagramReductionTechniquesIIIMovingsummingjunctionszxy++
Gzxy++
GG
zxy++
Gzx++G
y
BlockDiagramReductionTechniquesIVReductionoffeed-forwardpaths(BlocksinParallel)YXG++Hxy
BlockDiagramReductionTechniquesVReductionoffeedbackloopsYXG++HxyeHy
BlockDiagramReductionTechniquesVIReductionoffeedbackloopsYXG+-HxyeHy
Thisoneisverycommonlyusedinclosedloopcontrolsystemanalysis!BlockDiagramReductionTechniquesVIISystemswithMultipleInputsThereisoftenmorethanoneinputintoasystem…G1xzG2u++yXandYarebothinputsintothesystem,zistheoutput
Note-thiscouldalsobesolvedusingthesuperpositiontheorem--Assumey=0,calculateZ-Assumex=0,calculateZ-FullzisthesumofthesetworesultsFirstOrderSystemsIfanelementofenergystorageisassociatedwithanelementofenergydissipationthenthenatureoftheoutputisgivenby:
x=inputvariabley=outputvariableT=Timeconstantk=gainExample:vvRvLiRL
Comparetostandardform:
ResponseofafirstOrderSystem:UnitStepWeusea“StepInput”totesttheresponseofasystemtoinstantaneouschangesininput:x(t)=u(t):Itispossibletomathematicallyprovethatthesolutiontothedifferentialequationis:y0k
tTransientStateandSteadyState5TTransientStateSteadyStateResponseofafirstOrderSystem:UnitCosinevRvLiR
TheDOperator
DisamathematicaloperatorwhichrepresentstheprocessofdifferentiationwithrespecttotimeExample:
KeyPointsBlockDiagramReductionDeterminingsystemresponseWehavealreadydeducedthattheresponseofsystemstostimuliisusuallydeterminedbyadifferentialequationThismeansthatforagiveninput(astepinputforexample),inordertodeterminehowsystemresponds,wemustsolvethedifferentialequation.Thiscanbecarriedoutusingtheusualtechniques,butthereisabetterway,whichlendsitselfverywelltocontroldesignasitgivesusatransferfunction.ThemethodusesLAPLACETRANSFORMSDifferentialEquationInputConvertusingtheLaplaceTransformSolvesysteminLaplacedomainConvertbackintothetimedomainSolutionPierre-SimonLaplace:TheFrenchNewtonDevelopedmathematicsinastronomy,physics,andstatisticsBeganworkincalculuswhichledtotheLaplaceTransformFocusedlateroncelestialmechanicsOneofthefirstscientiststosuggesttheexistenceofblackholesLaplaceTransform:IdeasTheLaplaceTransformconvertsintegralanddifferentialequationsintoalgebraicequationsThisislikephasors,but:Appliestogeneralsignals,notjustsinusoidsHandlesno-steady-stateconditionsAllowsustoanalyzeComplicatedcircuitswithsources,Ls,Rs,andCsComplicatedsystemswithintegrators,differentiators,gainsHistoryoftheTransform
Eulerbeganlookingatintegralsassolutionstodifferentialequationsinthemid1700’s:Lagrangetookthisastepfurtherwhileworkingonprobabilitydensityfunctionsandlookedatformsofthefollowingequation:Finally,in1785,LaplacebeganusingatransformationtosolveequationsoffinitedifferenceswhicheventuallyleadtothecurrenttransformTheLaplaceTransform
Notes:sisusuallycomplex(notreal)sisaconstantforthepurposeofintegrationTransformationisonlyvalidfort0NotationforLaplaceTransformsTimeDomains-Domain
transformsLowercaseUppercaseWewillbeinterestedinthesignaldefinedfort>=0TheLaplaceTransformofasignal(function)f(t)isthefunctiondefinedby:s
RestrictionsTherearetwogoverningfactorsthatdeterminewhetherLaplacetransformscanbeused:f(t)mustbeatleastpiecewisecontinuousfort≥0|f(t)|≤MeγtwhereMandγareconstantsSincethegeneralformoftheLaplacetransformis:itmakessensethatf(t)mustbeatleastpiecewisecontinuousfort≥0.Iff(t)wereverynasty,theintegralwouldnotbecomputable.ContinuityBoundednessThiscriterionalsofollowsdirectlyfromthegeneraldefinition:Iff(t)isnotboundedbyMeγtthentheintegralwillnotconverge.LaplaceTransformTheoryGeneralTheoryExampleConvergenceLaplaceTransformsSomeLaplaceTransformsWidevarietyoffunctioncanbetransformedInverseTransformOftenrequirespartialfractionsorothermanipulationtofindaformthatiseasytoapplytheinverseLaplaceTransformsofCommonFunctions:UnitRampfunction
1f(t)tLaplaceTransformsofCommonFunctions:Sinusoid
f(t)t1f(t)tExponentialDecayfunction
f(t)t
Sinusoidalfunction
LaplaceTransformsofCommonFunctionsIIf(t)tDampedSinusoidfunction
LaplaceTransformsofCommonFunctionsIIIf(t)tTheunitimpulse(deltadirac)function
Unitarea
....Workingforthisistedious…
Properties:LinearityTheLaplaceTransformislinear:iffandgareanysignals,andaisanyscalar,wehave:i.e.homogeneity&superpositionhold.Example:Properties:One-to-one
What“almost”means?Iffandgdifferonlyatafinitenumberofpoints(wheretherearen’timpulses),thenF=GTimeScalingdefinesignalgbyg(t)=f(at),wherea>0;then G(s)=(1/a)F(s/a)makessense:timesarescaledbya,frequenciesby1/a.Let’scheck:Whereτ=atExponentialScaling
TimeDelay
Example:Timedelay
DerivativesintheLaplaceDomainI
sF(s)
Wheref(0)istheinitialcondition(i.e.it’svalueatt=0)ofthefunction.Ifthereisn’tonethenf(0)=0Example:Derivation
DerivativesintheLaplaceDomainII
Similarexpressionscanbederivedforhigherorderdifferentials
......Iftherearenoinitialconditionsthenthesee????(??),??2????and??3????respectivelyExample:RLCircuitTransferfunctionvvRvLiRL
Withnoinitialconditions:
iI(s)di/dtsI(s)vV(s)Assumingthevoltage,V(s),istheinput,andthecurrentwe’reconsidering,I(s)istheoutput,wecanconvertthisintoatransferfunction:
Example:RLCCircuitTransferfunction
vvRvLivC
Thistime,let’sassumethatthecapacitorvoltageistheoutputthatwewanttoderiveatransferfunctionforWithzeroinitialconditions:vc
VC(s)dvc/dtsVC(s)vV(s)
Rearrangingasatransferfunction:
IntegralintheLaplaceDomainIILetgbetherunningintegralofasignalf,i.e.,????=0??????????Then????=1????(??)i.e.,time-domainintegralesdivisionbyfrequencyvariablesExample:????=??(??),so????=1;gisaunitstepfunction????=1??fisaunitstepfunction,then????=1??;gisaunitrampfunction(g(t)=tfort>=0), ????=1??2IntegralintheLaplaceDomainII
Multiplicationbyt
Multiplicationbyt:Example
ConvolutionTheconvolutionofsignalsfandg,denoted?=?????,isthesignal???=0?????????????????Sameas???=0?????????????????;inotherwords?????=?????(verygreat)importancewillsooneclearIntermsofLaplaceTransform:????=??????(??)LaplaceTransformturnsconvolutionintomultiplication.Convolution:ProveLet’sshowthat??????=????????????=??=0∞(??=0?????????????????)???????????=??=0∞??=0????????????????????????????Whereweintegrateoverthetriangle0≤??≤??Changeorderofintegration:????=??=0∞??=??∞??????????????????????????Changeviabletto??=?????;????=????;regionofintegrationes ??≥0,??≥0Convolution:Example
FindingtheLaplaceTransform
LaplaceTransformtablesLaplaceTransformforODEsEquationwithinitialconditionsLaplacetransformislinearApplyderivativeformulaRearrangeTaketheinverseLaplaceTransforminPDEsLaplacetransformintwovariables(alwaystakenwithrespecttotimevariable,t):Inverselaplaceofa2dimensionalPDE:CanbeusedforanydimensionPDE:ODEsreducetoalgebraicequationsPDEsreducetoeitheranODE(iforiginalequationdimension2)oranotherPDE(iforiginalequationdimension>2)TheTransformreduc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 出納員招聘面試題及答案
- 市場策略分析師職位面試技巧與高頻問題解析
- 投資分析師的常見問題與答案參考
- 直播運營經(jīng)理面試題及流量變現(xiàn)方法含答案
- 2025年智能城市管理系統(tǒng)可行性研究報告
- 2025年水資源綜合利用管理項目可行性研究報告
- 2025年城市微綠化推廣項目可行性研究報告
- 2025年生態(tài)農(nóng)業(yè)發(fā)展模式的可行性研究報告
- 2025年人工智能健康診斷系統(tǒng)研發(fā)項目可行性研究報告
- 2025年環(huán)保產(chǎn)業(yè)投資合作項目可行性研究報告
- 兒科醫(yī)生規(guī)培述職報告
- 東北林業(yè)大學(xué)19-20高數(shù)A1期末考試
- 江蘇蘇州市常熟經(jīng)開控股有限公司招聘筆試題庫2025
- 2025年廣西國控資本運營集團有限責(zé)任公司秋季公開招聘534人筆試考試參考試題附答案解析
- 醫(yī)院收費6S管理制度
- 2025年NASM-CES-I國際運動康復(fù)專家考試備考試題及答案解析
- 老年科的疾病宣教
- 校園保潔服務(wù)方案投標方案(技術(shù)標)
- 2025年上半年縣稅務(wù)領(lǐng)導(dǎo)履行全面從嚴治黨“一崗雙責(zé)”責(zé)任述職報告
- 圓鋼加工協(xié)議書
- 《季氏將伐顓臾》
評論
0/150
提交評論