版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆上海南洋模范高二數(shù)學第一學期期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知動點在直線上,過點作圓的切線,切點為,則線段的長度的最小值為()A. B.4C. D.2.我國古代數(shù)學名著《算法統(tǒng)宗》中說:“九百九十六斤棉,贈分八子做盤纏,次第每人多十七,要將第八數(shù)來言,務要分明依次第,孝和休惹外人傳.”意為:“996斤棉花,分別贈送給8個子女做旅費,從第一個孩子開始,以后每人依次多17斤,直到第8個孩子為止.分配時一定要依照次序分,要順從父母,兄弟間和氣,不要引得外人說閑話.”在這個問題中,第5個孩子分到棉花為()A.133斤 B.116斤C.99斤 D.65斤3.已知向量,,且與互相平行,則的值為()A.-2 B.C. D.4.離心率為,長軸長為6的橢圓的標準方程是A. B.或C. D.或5.若橢圓的一個焦點為,則的值為()A.5 B.3C.4 D.26.若動點滿足方程,則動點P的軌跡方程為()A. B.C. D.7.已知等差數(shù)列,且,則()A.3 B.5C.7 D.98.已知等比數(shù)列中,,,則該數(shù)列的公比為()A. B.C. D.9.直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點,若,則k的取值范圍是()A. B.(-∞,]∪[0,+∞)C. D.10.若數(shù)列滿足,則數(shù)列的通項公式為()A. B.C. D.11.設雙曲線:的左焦點和右焦點分別是,,點是右支上的一點,則的最小值為()A.5 B.6C.7 D.812.在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,點E是棱PC的中點,作,交PB于F.下面結(jié)論正確的個數(shù)為()①∥平面EDB;②平面EFD;③直線DE與PA所成角為60°;④點B到平面PAC的距離為.A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,角A,B,C所對的邊分別為a,b,c,設△ABC的面積為S,其中,,則S的最大值為______14.若直線:x-2y+1=0與直線:2x+my-1=0相互垂直,則實數(shù)m的值為________.15.如圖所示,將若干個點擺成三角形圖案,每條邊(包括兩個端點)有個點,相應的圖案中點的個數(shù)記為,按此規(guī)律,則___________,___________.16.直線過拋物線的焦點F,且與C交于A,B兩點,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),且a0(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)記函數(shù),若函數(shù)有兩個零點,①求實數(shù)a的取值范圍;②證明:18.(12分)在平面直角坐標系中,設點,直線,點P在直線l上移動,R是線段PF與y軸的交點,也是PF的中點.,(1)求動點Q的軌跡的方程E;(2)過點F作兩條互相垂直的曲線E的弦AB、CD,設AB、CD的中點分別為M,N.求直線MN過定點R的坐標19.(12分)橢圓的離心率為,設為坐標原點,為橢圓的左頂點,動直線過線段的中點,且與橢圓相交于、兩點.已知當直線的傾斜角為時,(1)求橢圓的標準方程;(2)是否存在定直線,使得直線、分別與相交于、兩點,且點總在以線段為直徑的圓上,若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由20.(12分)圓過點A(1,-2),B(-1,4),求:(1)周長最小的圓的方程;(2)圓心在直線2x-y-4=0上的圓的方程21.(12分)已知曲線:.(1)若曲線是雙曲線,求的取值范圍;(2)設,已知過曲線的右焦點,傾斜角為的直線交曲線于A,B兩點,求.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)當a=1時,對于任意的,,都有恒成立,則m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求出的最小值,由切線長公式可結(jié)論【詳解】解:由,得最小時,最小,而,所以故選:A.2、A【解析】根據(jù)等差數(shù)列的前n項和公式、等差數(shù)列的通項公式進行求解即可.【詳解】依題意得,八個子女所得棉花斤數(shù)依次構(gòu)成等差數(shù)列,設該等差數(shù)列為,公差為d,前n項和為,第一個孩子所得棉花斤數(shù)為,則由題意得,,解得,故選:A3、A【解析】應用空間向量坐標的線性運算求、的坐標,根據(jù)空間向量平行有,即可求的值.【詳解】由題設,,,∵與互相平行,∴且,則,可得.故選:A4、B【解析】試題解析:當焦點在x軸上:當焦點在y軸上:考點:本題考查橢圓的標準方程點評:解決本題的關鍵是焦點位置不同方程不同5、B【解析】由題意判斷橢圓焦點在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點在軸上,則,從而,解得:.故選:B.6、A【解析】根據(jù)方程可以利用幾何意義得到動點P的軌跡方程是以與為焦點的橢圓方程,從而求出軌跡方程.【詳解】由題意得:到與的距離之和為8,且8>4,故動點P的軌跡方程是以與為焦點的橢圓方程,故,,所以,,所以橢圓方程為.故選:A7、B【解析】根據(jù)等差數(shù)列的性質(zhì)求得正確答案.【詳解】由于數(shù)列是等差數(shù)列,所以.故選:B8、C【解析】設等比數(shù)列的公比為,可得出,即可得解.【詳解】設等比數(shù)列的公比為,可得出.故選:C.9、A【解析】圓心為,半徑為2,圓心到直線的距離為,解不等式得k的取值范圍考點:直線與圓相交的弦長問題10、D【解析】由,分兩步,當求出,當時得到,兩式作差即可求出數(shù)列的通項公式;【詳解】解:因為①,當時,,當時②,①②得,所以,當時也成立,所以;故選:D11、C【解析】根據(jù)雙曲線的方程求出的值,由雙曲線的定義可得,由雙曲線的性質(zhì)可知,利用函數(shù)的單調(diào)性即可求得最小值.【詳解】由雙曲線:可得,,所以,所以,,由雙曲線的定義可得,所以,所以,由雙曲線的性質(zhì)可知:,令,則,所以上單調(diào)遞增,所以當時,取得最小值,此時點為雙曲線的右頂點,即的最小值為,故選:C.12、D【解析】①由題意連接交于,連接,則是中位線,證出,由線面平行的判定定理知∥平面;②由底面,得,再由證出平面,即得,再由是正方形證出平面,則有,再由條件證出平面;③根據(jù)邊長證明△DEO是等邊三角形即可;④根據(jù)等體積法即可求.【詳解】①如圖所示,連接交于點,連接底面是正方形,點是的中點在中,是中位線,而平面且平面,∥平面;故①正確;②如圖所示,底面,且平面,,,是等腰直角三角形,又是斜邊的中線,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正確;③如圖所示,連接AC交BD與O,連接OE,由OE是三角形PAC中位線知OE∥PA,故∠DEO為異面直線PA和DE所成角或其補角,由②可知DE=,OD=,OE=,∴△DEO是等邊三角形,∴∠DEO=60°,故③正確;④如圖所示,設B到平面PAC的距離為d,由題可知PA=AC=PC=,故,由.故④正確.故正確的有:①②③④,正確的個數(shù)為4.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】應用余弦定理有,再由三角形內(nèi)角性質(zhì)及同角三角函數(shù)平方關系求,根據(jù)基本不等式求得,注意等號成立條件,最后利用三角形面積公式求S的最大值.【詳解】由余弦定理知:,而,所以,而,即,當且僅當時等號成立,又,當且僅當時等號成立.故答案為:14、1【解析】由兩條直線垂直可知,進而解得答案即可.【詳解】因為兩條直線垂直,所以.故答案為:1.15、①.②.【解析】利用題中所給規(guī)律求出即可.【詳解】解:由圖可知,,,,,因為符合等差數(shù)列的定義且公差為所以,所以,故答案為:,.16、8【解析】由題意,求出,然后聯(lián)立直線與拋物線方程,由韋達定理及即可求解.【詳解】解:因為拋物線的焦點坐標為,又直線過拋物線的焦點F,所以,拋物線的方程為,由,得,所以,所以.故答案為:8.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減(2)①;②證明見解析【解析】(1)求導,求解可得導函數(shù)恒小于等于0,即得證;(2)①分析函數(shù)的單調(diào)性,由有兩個實數(shù)根可求解;②由(1)得2lnxx?,再利用其放縮可得,由此有,問題得證.【小問1詳解】當a=1時,函數(shù)因為所以函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減;【小問2詳解】(i)由已知可得方程有兩個實數(shù)根記,則.當時,,函數(shù)k(x)是增函數(shù);當時,,函數(shù)k(x)是減函數(shù),所以,故(ii)易知,當x1時,,故.由(1)可知,當0x1時,,所以2lnxx?由,得,所以因為,所以18、(1)(2)【解析】(1)由圖中的幾何關系可知,故可知動點Q的軌跡E是以F為焦點,l為準線的拋物線,但不能和原點重合,即可直接寫出拋物線的方程;(2)設出直線AB的方程,把點、的坐標代入拋物線方程,兩式作差后,再利用中點坐標公式求出點M的坐標,同理求出點的坐標,即可求出直線MN的方程,最后可求出直線MN過哪一定點.【小問1詳解】∵直線的方程為,點R是線段FP的中點且,∴RQ是線段FP的垂直平分線,∵,∴是點Q到直線l的距離,∵點Q在線段FP的垂直平分線,∴,則動點Q的軌跡E是以F為焦點,l為準線的拋物線,但不能和原點重合,即動點Q軌跡的方程為.【小問2詳解】設,,由題意直線AB斜率存在且不為0,設直線AB的方程為,由已知得,兩式作差可得,即,則,代入可得,即點M的坐標為,同理設,,直線的方程為,由已知得,兩式作差可得,即,則,代入可得,即點的坐標為,則直線MN的斜率為,即方程為,整理得,故直線MN恒過定點.19、(1)(2)存在,且直線的方程為或【解析】(1)分析可知,,直線的方程為,設點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,利用弦長公式可求得的值,即可得出橢圓的標準方程;(2)設點、,設直線的方程為,將該直線方程與橢圓的方程聯(lián)立,列出韋達定理,求出點、,由已知得出,求出的值,即可得出結(jié)論.【小問1詳解】解:因為,則,,所以,橢圓的方程為,即,易知點,則點,當直線的傾斜角為時,直線的方程為,設點、,聯(lián)立,可得,,由韋達定理可得,,所以,,解得,則,,因此,橢圓的標準方程為.【小問2詳解】解:易知點,若直線與軸重合,則、為橢圓長軸的兩個端點,不合乎題意.設直線的方程為,設點、,聯(lián)立,可得,,由韋達定理可得,,直線的斜率為,直線的方程為,故點,同理可得點,,,由題意可得,解得或.因此,存在滿足題設條件的直線,且直線的方程為或,點總在以線段為直徑的圓上.【點睛】方法點睛:利用韋達定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設直線方程,設交點坐標為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關于(或)的一元二次方程,必要時計算;(3)列出韋達定理;(4)將所求問題或題中的關系轉(zhuǎn)化為、(或、)的形式;(5)代入韋達定理求解.20、(1)x2+(y-1)2=10;(2)(x-3)2+(y-2)2=20.【解析】(1)根據(jù)當AB為直徑時,過A,B的圓的半徑最小進行求解即可;(2)根據(jù)垂徑定理,通過解方程組求出圓心坐標,進而可以求出圓的方程.【詳解】解:(1)當AB為直徑時,過A,B的圓的半徑最小,從而周長最小,即AB中點(0,1)為圓心,半徑r=|AB|=.故圓的方程為x2+(y-1)2=10;(2)由于AB的斜率為k=-3,則AB的垂直平分線的斜率為,AB的垂直平分線的方程是y-1=x,即x-3y+3=0.由解得即圓心坐標是C(3,2)又r=|AC|==2.所以圓的方程是(x-3)2+(y-2)2=20.21、(1)(2)【解析】(1)利用雙曲線的標準方程直接列不等式組,即可求解;(2)先求出直線l的方程為:,利用“設而不求法”和弦長公式求弦長.【小問1詳解】要使曲線:為雙曲線,只需,解得:,即的取值范圍.【小問2詳解】當m=0時,曲線C的方程為,可得,所以右焦點,由題意可得直線l的方程為:.設,聯(lián)立整理可得:,可得:所以弦長,所以22、(1)答案見解析;(2).【解析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 死亡報告卡培訓制度
- 重精隨訪人員培訓制度
- 報關公司aeo認證內(nèi)部培訓制度
- 福建醫(yī)師規(guī)范化培訓制度
- 外聘兼職教師培訓制度
- 學?;瘖y培訓機構(gòu)日常管理制度
- 設備培訓使用制度
- 核心制度培訓計劃表
- 土地規(guī)劃人員培訓制度
- 校外教育培訓監(jiān)管制度
- 學堂在線 雨課堂 學堂云 實繩結(jié)技術 章節(jié)測試答案
- 《陸上風電場工程設計概算編制規(guī)定及費用標準》(NB-T 31011-2019)
- 介入導管室有關知識課件
- 銀行客戶經(jīng)理壓力與情緒管理培訓
- 推廣經(jīng)理半年工作計劃
- 無人機駕駛員培訓計劃及大綱
- 價格說明函格式范本正規(guī)范本(通用版)
- 水車澆水施工方案
- 110kV線路運維方案
- 智能化弱電工程常見質(zhì)量通病的避免方法
- 《中國古代文學通識讀本》pdf
評論
0/150
提交評論