2025屆山西省大同市陽(yáng)高縣第一中學(xué)高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第1頁(yè)
2025屆山西省大同市陽(yáng)高縣第一中學(xué)高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第2頁(yè)
2025屆山西省大同市陽(yáng)高縣第一中學(xué)高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第3頁(yè)
2025屆山西省大同市陽(yáng)高縣第一中學(xué)高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第4頁(yè)
2025屆山西省大同市陽(yáng)高縣第一中學(xué)高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆山西省大同市陽(yáng)高縣第一中學(xué)高二上數(shù)學(xué)期末經(jīng)典模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面法向量為,,則直線與平面的位置關(guān)系為A. B.C.與相交但不垂直 D.2.設(shè)雙曲線的左、右頂點(diǎn)分別為、,左、右焦點(diǎn)分別為、,以為直徑的圓與雙曲線左支的一個(gè)交點(diǎn)為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.3.函數(shù),的值域?yàn)椋ǎ〢. B.C. D.4.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其意思為:有一個(gè)人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請(qǐng)問(wèn)第二天走了()A.192

里 B.96

里C.48

里 D.24

里5.設(shè)函數(shù),若為奇函數(shù),則曲線在點(diǎn)處的切線方程為()A. B.C. D.6.已知直線m經(jīng)過(guò),兩點(diǎn),則直線m的斜率為()A.-2 B.C. D.27.高中生在假期參加志愿者活動(dòng),既能服務(wù)社會(huì)又能鍛煉能力.某同學(xué)計(jì)劃在福利院、社區(qū)、圖書(shū)館和醫(yī)院中任選兩個(gè)單位參加志愿者活動(dòng),則參加圖書(shū)館活動(dòng)的概率為()A. B.C. D.8.已知橢圓=1的離心率為,則k的值為()A.4 B.C.4或 D.4或9.已知兩圓相交于兩點(diǎn),,兩圓圓心都在直線上,則值為()A. B.C. D.10.方程表示的曲線為()A.拋物線與一條直線 B.上半拋物線(除去頂點(diǎn))與一條直線C.拋物線與一條射線 D.上半拋物線(除去頂點(diǎn))與一條射線11.已知隨機(jī)變量X服從二項(xiàng)分布X~B(4,),()A. B.C. D.12.設(shè)平面的法向量為,平面的法向量為,若,則的值為()A.-5 B.-3C.1 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線過(guò)點(diǎn),且漸近線方程為,則該雙曲線的標(biāo)準(zhǔn)方程為_(kāi)___________________.14.兩條平行直線與的距離是__________15.若,滿足約束條件,則的最大值為_(kāi)____________16.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知等比數(shù)列滿足,.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)若,設(shè)(),記數(shù)列的前n項(xiàng)和為,求.18.(12分)已知三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且(1)求角B;(2)若,角B的角平分線交AC于點(diǎn)D,,求CD的長(zhǎng)19.(12分)已知圓,圓心在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)求直線被圓截得的弦的長(zhǎng)20.(12分)已知橢圓的左、右焦點(diǎn)分別為,離心率為,圓:過(guò)橢圓的三個(gè)頂點(diǎn),過(guò)點(diǎn)的直線(斜率存在且不為0)與橢圓交于兩點(diǎn)(1)求橢圓的標(biāo)準(zhǔn)方程(2)證明:在軸上存在定點(diǎn),使得為定值,并求出定點(diǎn)的坐標(biāo)21.(12分)已知點(diǎn),橢圓:的離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).設(shè)過(guò)點(diǎn)的動(dòng)直線與相交于,兩點(diǎn)(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由22.(10分)已知橢圓(a>b>0)的右焦點(diǎn)為F2(3,0),離心率為e.(1)若e=,求橢圓的方程;(2)設(shè)直線y=kx與橢圓相交于A,B兩點(diǎn),M,N分別為線段AF2,BF2的中點(diǎn),若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且<e≤,求k的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】.本題選擇A選項(xiàng).2、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進(jìn)而求出的面積【詳解】雙曲線的方程為:,,設(shè)以為直徑的圓與直線相切與點(diǎn),則,且,,∥.又為的中點(diǎn),,又,,的面積為:.故選:C3、A【解析】利用基本不等式可得,進(jìn)而可得,即求.【詳解】∵,∴,當(dāng)且僅當(dāng),即時(shí)取等號(hào),∴,,∴.故選:A.4、B【解析】由題可得此人每天走的步數(shù)等比數(shù)列,根據(jù)求和公式求出首項(xiàng)可得.【詳解】由題意可知此人每天走的步數(shù)構(gòu)成為公比的等比數(shù)列,由題意和等比數(shù)列的求和公式可得,解得,第此人第二天走里.故選:B5、C【解析】利用函數(shù)的奇偶性求出,求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,利用點(diǎn)斜式即可求出結(jié)果【詳解】函數(shù)的定義域?yàn)?,若為奇函?shù),則則,即,所以,所以函數(shù),可得;所以曲線在點(diǎn)處的切線的斜率為,則曲線在點(diǎn)處的切線方程為,即故選:C6、A【解析】根據(jù)斜率公式求得正確答案.【詳解】直線的斜率為:.故選:A7、D【解析】對(duì)4個(gè)單位分別編號(hào),利用列舉法求出概率作答.【詳解】記福利院、社區(qū)、圖書(shū)館和醫(yī)院分別為A,B,C,D,從4個(gè)單位中任選兩個(gè)的試驗(yàn)有AB,AC,AD,BC,BD,CD,共6個(gè)基本事件,它們等可能,其中有參加圖書(shū)館活動(dòng)的事件有AC,BC,CD,共3個(gè)基本事件,所以參加圖書(shū)館活動(dòng)的概率.故選:D8、C【解析】根據(jù)焦點(diǎn)所在坐標(biāo)軸進(jìn)行分類(lèi)討論,由此求得的值.【詳解】當(dāng)焦點(diǎn)在軸上時(shí),,且.當(dāng)焦點(diǎn)在軸上時(shí),且.故選:C9、A【解析】由相交弦的性質(zhì),可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得的值,即可得的坐標(biāo),進(jìn)而可得中點(diǎn)的坐標(biāo),代入直線方程可得;進(jìn)而將、相加可得答案【詳解】根據(jù)題意,由相交弦的性質(zhì),相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得,則,故中點(diǎn)為,且其在直線上,代入直線方程可得,1,可得;故;故選:A【點(diǎn)睛】方法點(diǎn)睛:解答圓和圓的位置關(guān)系時(shí),要注意利用平面幾何圓的知識(shí)來(lái)分析解答.10、B【解析】化簡(jiǎn)得出或,由此可得出方程表示的曲線.【詳解】由可得或,所以,方程表示的曲線為上半拋物線(除去頂點(diǎn))與一條直線,故選:B.11、D【解析】利用二項(xiàng)分布概率計(jì)算公式,計(jì)算出正確選項(xiàng).【詳解】∵隨機(jī)變量X服從二項(xiàng)分布X~B(4,),∴.故選:D.12、C【解析】根據(jù),可知向量建立方程求解即可.【詳解】由題意根據(jù),可知向量,則有,解得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】依題意,設(shè)所求的雙曲線的方程為.點(diǎn)為該雙曲線上的點(diǎn),.該雙曲線的方程為:,即.故本題正確答案是.14、5【解析】根據(jù)兩平行直線,可求得a值,根據(jù)兩平行線間距離公式,即可得答案.【詳解】因?yàn)閮善叫兄本€與,所以,解得,所以?xún)善叫芯€的距離.故答案為:515、6【解析】首先根據(jù)題中所給的約束條件,畫(huà)出相應(yīng)的可行域,再將目標(biāo)函數(shù)化成斜截式,之后在圖中畫(huà)出直線,在上下移動(dòng)的過(guò)程中,結(jié)合的幾何意義,可以發(fā)現(xiàn)直線過(guò)B點(diǎn)時(shí)取得最大值,聯(lián)立方程組,求得點(diǎn)B的坐標(biāo)代入目標(biāo)函數(shù)解析式,求得最大值.【詳解】根據(jù)題中所給的約束條件,畫(huà)出其對(duì)應(yīng)的可行域,如圖所示:由,可得,畫(huà)出直線,將其上下移動(dòng),結(jié)合的幾何意義,可知當(dāng)直線在y軸截距最大時(shí),z取得最大值,由,解得,此時(shí),故答案為6.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問(wèn)題,在求解的過(guò)程中,首先需要正確畫(huà)出約束條件對(duì)應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫(huà)出一條直線,上下平移,判斷哪個(gè)點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.16、132【解析】根據(jù)程序框圖模擬程序運(yùn)行,確定變量值的變化可得結(jié)論【詳解】程序運(yùn)行時(shí),變量值變化如下:,判斷循環(huán)條件,滿足,,;判斷循環(huán)條件,滿足,,;判斷循環(huán)條件,不滿足,輸出故答案為:132三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)設(shè)等比數(shù)列的公比為q,由已知建立方程組,求得數(shù)列的首項(xiàng)和公比,從而求得數(shù)列的通項(xiàng);(Ⅱ)由(Ⅰ)及已知可得和(),運(yùn)用錯(cuò)位相減法可求得數(shù)列的和【詳解】解:(Ⅰ)設(shè)等比數(shù)列的公比為q,由,可得,記為①又因?yàn)椋傻茫从洖棰?,由①②可得或,故的通?xiàng)公式為或(Ⅱ)由(Ⅰ)及可知,所以(),所以③④③-④得,所以【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的常用方法:(1)公式法:即直接用等差、等比數(shù)列的求和公式求和.(2)錯(cuò)位相減法:若是等差數(shù)列,是等比數(shù)列,求.(3)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,相消剩下首尾的若干項(xiàng).常見(jiàn)的裂頂有,,等.(4)分組求和法:把數(shù)列的每一項(xiàng)分成若干項(xiàng),使其轉(zhuǎn)化為等差或等比數(shù)列,再求和.(5)倒序相加法.18、(1)(2)【解析】(1)根據(jù)正弦定理邊角互化得,進(jìn)而得;(2)根據(jù)題意得,進(jìn)而在中,由余弦定理即可得答案.【小問(wèn)1詳解】解:因?yàn)椋杂烧叶ɡ砜傻?,所以,即,因?yàn)?,所以,故,因?yàn)椋浴拘?wèn)2詳解】解:由(1)可知,又;所以,,,所以,在,由余弦定理可得,即,解得19、(1);(2)【解析】(1)由圓的一般式方程求出圓心代入直線即可求出得值,即可求解;(2)先計(jì)算圓心到直線的距離,利用即可求弦長(zhǎng).【詳解】(1)由圓,可得所以圓心為,半徑又圓心在直線上,即,解得所以圓的一般方程為,故圓的標(biāo)準(zhǔn)方程為(2)由(1)知,圓心,半徑圓心到直線的距離則直線被圓截得的弦的長(zhǎng)為所以,直線被圓截得弦的長(zhǎng)為【點(diǎn)睛】方法點(diǎn)睛:圓的弦長(zhǎng)的求法(1)幾何法,設(shè)圓的半徑為,弦心距為,弦長(zhǎng)為,則;(2)代數(shù)法,設(shè)直線與圓相交于,,聯(lián)立直線與圓的方程,消去得到一個(gè)關(guān)于的一元二次方程,從而可求出,,根據(jù)弦長(zhǎng)公式,即可得出結(jié)果.20、(1);(2)見(jiàn)解析,定點(diǎn)【解析】(1)先判斷圓經(jīng)過(guò)橢圓的上、下頂點(diǎn)和右頂點(diǎn),令圓方程中的,得,即.再由求即可.(2)設(shè)在軸上存在定點(diǎn),使得為定值,根據(jù)題意,設(shè)直線的方程為,聯(lián)立可得,再運(yùn)算將韋達(dá)定理代入化簡(jiǎn)有與k無(wú)關(guān)即可.【詳解】(1)由圓方程中的時(shí),的兩根不為相反數(shù),故可設(shè)圓經(jīng)過(guò)橢圓的上、下頂點(diǎn)和右頂點(diǎn),令圓方程中的,得,即有又,解得∴橢圓的標(biāo)準(zhǔn)方程為(2)證明:設(shè)在軸上存在定點(diǎn),使得為定值,由(1)可得,設(shè)直線的方程為,聯(lián)立可得,設(shè),則,,要使為定值,只需,解得∴在軸上存在定點(diǎn),使得為定值,定點(diǎn)的坐標(biāo)為【點(diǎn)睛】本題主要考查橢圓的幾何性質(zhì)和直線與橢圓的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.21、(1);(2)存在;或.【解析】(1)設(shè),由,,,求得的值即可得橢圓的方程;(2)設(shè),,直線的方程為與橢圓方程聯(lián)立可得,,進(jìn)而可得弦長(zhǎng),求出點(diǎn)到直線的距離,解方程,求得的值即可求解.【小問(wèn)1詳解】設(shè),因?yàn)橹本€的斜率為,,所以,可得,又因?yàn)?,所以,所以,所以橢圓的方程為【小問(wèn)2詳解】假設(shè)存在直線,使得的面積為,當(dāng)軸時(shí),不合題意,設(shè),,直線的方程為,聯(lián)立消去得:,由可得或,,,所以,點(diǎn)到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.22、(1);(2)【解析】(1)根據(jù)右焦點(diǎn)為F2(3,0),以及,求得a,b,c即可.(2)聯(lián)立,根據(jù)M,N分別為線段AF2,BF2中點(diǎn),且坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,易得OM⊥ON,則四邊形OMF2N為矩形,從而AF2⊥BF2,然后由0,結(jié)合韋達(dá)定理求解.【詳解】(1)由題意得c=3,,所以.又因?yàn)閍2=b2+c2,所以b2=3.所以橢圓的方程為.(2)由,得(b2+a2k2)x2-a2b2=0.設(shè)A(x1,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論