版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共9頁海南省保亭縣2024-2025學年數(shù)學九年級第一學期開學統(tǒng)考試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)若,則下列不等式不成立的是()A. B. C. D.2、(4分)如圖,周長為34的矩形ABCD被分成7個全等的矩形,則矩形ABCD的面積為()A.280 B.140 C.70 D.1963、(4分)已知數(shù)據(jù)x1,x2,x3的平均數(shù)是5,則數(shù)據(jù)3x1+2,3x2+2,3x3+2的平均數(shù)是()A.5 B.7 C.15 D.174、(4分)如下是一種電子記分牌呈現(xiàn)的數(shù)字圖形,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.5、(4分)在△ABC中,∠A、∠B、∠C所對的邊分別是a、b、c,在下列關(guān)系中,不屬于直角三角形的是(
)A.b2=a2﹣c2
B.a(chǎn):b:c=3:4:5C.∠A﹣∠B=∠C
D.∠A:∠B:∠C=3:4:56、(4分)下列說法正確的是()A.平行四邊形的對角線相等B.一組對邊平行,一組對邊相等的四邊形是平行四邊形C.對角線互相平分的四邊形是平行四邊形D.有兩對鄰角互補的四邊形是平行四邊形7、(4分)某市政工程隊準備修建一條長1200米的污水處理管道.在修建完400米后,為了能趕在訊期前完成,采用新技術(shù),工作效率比原來提升了25%.結(jié)果比原計劃提前4天完成任務(wù).設(shè)原計劃每天修建管道x米,依題意列方程得()A. B.C. D.8、(4分)如圖,點A、B在反比例函數(shù)y=(k>0,x>0)的圖象上,過點A、B作x軸的垂線,垂足分別為M,N,延長線段AB交x軸于點C,若OM=MN=NC,S△BNC=2,則k的值為()A.4 B.6 C.8 D.12二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)化簡:=_______.10、(4分)某超市促銷活動,將三種水果采用甲、乙、丙三種方式搭配裝進禮盒進行銷售.每盒的總成本為盒中三種水果成本之和,盒子成本忽略不計.甲種方式每盒分別裝三種水果;乙種方式每盒分別裝三種水果.甲每盒的總成本是每千克水果成本的倍,每盒甲的銷售利潤率為;每盒甲比每盒乙的售價低;每盒丙在成本上提高標價后打八折出售,獲利為每千克水果成本的倍.當銷售甲、乙、丙三種方式搭配的禮盒數(shù)量之比為時,則銷售總利潤率為__________.11、(4分)公元9世紀,阿拉伯數(shù)學家阿爾?花拉子米在他的名著《代數(shù)學》中用圖解一元二次方程,他把一元二次方程x2+2x-35=0寫成x2+2x=35的形式,并將方程左邊的x2+2x看作是由一個正方形(邊長為x)和兩個同樣的矩形(一邊長為x,另一邊長為1)構(gòu)成的矩尺形,它的面積為35,如圖所示。于是只要在這個圖形上添加一個小正方形,即可得到一個完整的大正方形,這個大正方形的面積可以表小為:x2+2x+____=35+_______,整理,得12、(4分)如圖,為的中位線,,則________________.13、(4分)頻數(shù)直方圖中,一小長方形的頻數(shù)與組距的比值是6,組距為3,則該小組的頻數(shù)是_____.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,在正方形ABCD中,點E為AB上的點(不與A,B重合),△ADE與△FDE關(guān)于DE對稱,作射線CF,與DE的延長線相交于點G,連接AG,(1)當∠ADE=15°時,求∠DGC的度數(shù);(2)若點E在AB上移動,請你判斷∠DGC的度數(shù)是否發(fā)生變化,若不變化,請證明你的結(jié)論;若會發(fā)生變化,請說明理由;(3)如圖2,當點F落在對角線BD上時,點M為DE的中點,連接AM,F(xiàn)M,請你判斷四邊形AGFM的形狀,并證明你的結(jié)論。15、(8分)如圖,⊿是直角三角形,且,四邊形是平行四邊形,為的中點,平分,點在上,且.求證:16、(8分)我市某中學舉行“中國夢?校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.(1)根據(jù)圖示填寫下表;
平均數(shù)(分)
中位數(shù)(分)
眾數(shù)(分)
初中部
85
高中部
85
100
(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;(3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.17、(10分)某校數(shù)學興趣小組根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=|x|+1的圖象和性質(zhì)進行了探究,探究過程如下:(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應(yīng)值如表:X…﹣4﹣3﹣2﹣101234…Y…32.5m1.511.522.53…(1)其中m=.(2)如圖,在平面直角坐標系xOy中,描出了上表中各對對應(yīng)值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;(3)當2<y≤3時,x的取值范圍為.18、(10分)在平面直角坐標系xOy中,直線y=﹣x+2與x軸、y軸分別交于A、B兩點,直線BC交x軸負半軸于點C,∠BCA=30°,如圖①.(1)求直線BC的解析式.(2)在圖①中,過點A作x軸的垂線交直線CB于點D,若動點M從點A出發(fā),沿射線AB方向以每秒個單位長度的速度運動,同時,動點N從點C出發(fā),沿射線CB方向以每秒2個單位長度的速度運動,直線MN與直線AD交于點S,如圖②,設(shè)運動時間為t秒,當△DSN≌△BOC時,求t的值.(3)若點M是直線AB在第二象限上的一點,點N、P分別在直線BC、直線AD上,是否存在以M、B、N、P為頂點的四邊形是菱形.若存在,請直接寫出點M的坐標;若不存在,請說明理由.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)若關(guān)于x的分式方程有非負數(shù)解,則a的取值范圍是.20、(4分)如圖,四邊形中,,,為上一點,分別以,為折痕將兩個角(,)向內(nèi)折起,點,恰好都落在邊的點處.若,,則________.21、(4分)如圖,平行四邊形中,,,∠,點是的中點,點在的邊上,若為等腰三角形,則的長為__________.22、(4分)若關(guān)于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常數(shù)項為0,則m的值等于_____.23、(4分)如圖,在矩形中,,,點,分別在邊,上,以線段為折痕,將矩形折疊,使其點與點恰好重合并鋪平,則線段_____.二、解答題(本大題共3個小題,共30分)24、(8分)在平面直角坐標系中,已知直線與軸交于點,與軸交于點,點為的中點,點是線段上的動點,四邊形是平行四邊形,連接.設(shè)點橫坐標為.(1)填空:①當________時,是矩形;②當________時,是菱形;(2)當?shù)拿娣e為時,求點的坐標.25、(10分)某工廠制作甲、乙兩種窗戶邊框,已知同樣用12米材料制成甲種邊框的個數(shù)比制成乙種邊框的個數(shù)少1個,且制成一個甲種邊框比制成一個乙種邊框需要多用的材料.(1)求制作每個甲種邊框、乙種邊框各用多少米材料?(2)如果制作甲、乙兩種邊框的材料共640米,要求制作乙種邊框的數(shù)量不少于甲種邊框數(shù)量的2倍,求應(yīng)最多安排制作甲種邊框多少個(不計材料損耗)?26、(12分)如圖,在長方形中,為平面直角坐標系的原點,點在軸上,點在軸上,點在第一象限內(nèi),點從原點出發(fā),以每秒個單位長度的速度沿著的路線移動(即沿著長方形的邊移動一周).(1)分別求出,兩點的坐標;(2)當點移動了秒時,求出點的坐標;(3)在移動過程中,當三角形的面積是時,求滿足條件的點的坐標及相應(yīng)的點移動的時間.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、C【解析】
直接根據(jù)不等式的性質(zhì)進行分析判斷即可得到答案.【詳解】A.,則a是負數(shù),可以看成是5<6兩邊同時加上a,故A選項成立,不符合題意;B.是不等式5<6兩邊同時減去a,不等號不變,故B選項成立,不符合題意;C.5<6兩邊同時乘以負數(shù)a,不等號的方向應(yīng)改變,應(yīng)為:,故選項C不成立,符合題意;D.是不等式5<6兩邊同時除以a,不等號改變,故D選項成立,不符合題意.故選C.本題考查的實際上就是不等式的基本性質(zhì):不等式的兩邊都加上(或減去)同一個數(shù)(或式子)不等號的方向不變;不等式兩邊同乘以(或除以)同一個正數(shù),不等號的方向不變;不等式兩邊同乘以(或除以)同一個負數(shù),不等號的方向改變.2、C【解析】解:設(shè)小長方形的長、寬分別為x、y,依題意得:,解得:,則矩形ABCD的面積為7×2×5=1.故選C.【點評】考查了二元一次方程組的應(yīng)用,此題是一個信息題目,首先會根據(jù)圖示找到所需要的數(shù)量關(guān)系,然后利用這些關(guān)系列出方程組解決問題.3、D【解析】試題分析:先根據(jù)算術(shù)平均數(shù)的定義求出x1+x2+x3的值,進而可得出結(jié)論.解:∵x1,x2,x3的平均數(shù)是5,∴x1+x2+x3=15,∴===1.故選D.考點:算術(shù)平均數(shù).4、C【解析】
根據(jù)軸對稱和中心對稱圖形的概念可判別.【詳解】(A)既不是軸對稱也不是中心對稱;(B)是軸對稱但不是中心對稱;(C)是軸對稱和中心對稱;(D)是中心對稱但不是軸對稱故選:C5、D【解析】
根據(jù)勾股定理的逆定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形,三角形內(nèi)角和為180°進行分析即可.【詳解】A選項:∵b2=a2-c2,∴a2=b2+c2,是直角三角形,故此選項不合題意;
B選項:∵32+42=52,∴是直角三角形,故此選項不合題意;
C選項:∵∠A-∠B=∠C,
∴∠A=∠B+∠C,
∵∠A+∠B+∠C=180°,
∴∠A=90°,
∴是直角三角形,故此選項不合題意;
D選項:∠A:∠B:∠C=3:4:5,
∴∠C=180°×=75°,
∴不是直角三角形,故此選項符合題意;故選D.主要考查了勾股定理逆定理,以及三角形內(nèi)角和定理,關(guān)鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.6、C【解析】
由平行四邊形的判定和性質(zhì),依次判斷可求解.【詳解】解:A、平行四邊形的對角線互相平分,但不一定相等,故A選項不合題意;B、一組對邊平行,一組對邊相等的四邊形可能是等腰梯形,故B選項不合題意;C、對角線互相平分的四邊形是平行四邊形,故C選項符合題意;D、有兩對鄰角互補的四邊形可能是等腰梯形,故D選項不合題意;故選:C.本題考查了平行四邊形的判定和性質(zhì),熟練掌握相關(guān)性質(zhì)定理是解題的關(guān)鍵.7、B【解析】
設(shè)原計劃每天修建管道x米,則原計劃修建天數(shù)為天.實際前面400米,每天修建管道x米,需要天,剩下的1200-400=800米,每天修建管道x(1+25%)米,需要天.根據(jù)實際天數(shù)比原計劃提前4天完成任務(wù)即可得出數(shù)量關(guān)系.【詳解】設(shè)原計劃每天修建管道x米,根據(jù)題意的–=4,--=4,-=4,選項B正確.本題主要考查了分式方程的應(yīng)用,解題的關(guān)鍵是首先弄清題意,根據(jù)關(guān)鍵描述語,找到合適的等量關(guān)系;難點是得到實際修建的天數(shù).8、C【解析】∵BN∥AM,MN=NC,∴△CNB∽△CMA,∴S△CNB:S△CMA=()2=()2=,而S△BNC=2,∴S△CMA=1,∵OM=MN=NC,∴OM=MC,∴S△AOM=S△AMC=4,∵S△AOM=|k|,∴|k|=4,∴k=1.點睛:本題主要考查了反比例函數(shù)的比例系數(shù)k的幾何意義以及相似三角形的判定與性質(zhì).從反比例函數(shù)y=(k≠0)的圖象上任取一點向x軸或y軸作垂線,這一點和垂足以及坐標原點所構(gòu)成的三角形的面積是|k|,且保持不變.二、填空題(本大題共5個小題,每小題4分,共20分)9、【解析】
直接利用二次根式的性質(zhì)化簡得出答案.【詳解】解:原式=.故答案為:.此題主要考查了實數(shù)運算,正確掌握二次根式的性質(zhì)是解題關(guān)鍵.10、20%.【解析】
分別設(shè)每千克A、B、C三種水果的成本為x、y、z,設(shè)丙每盒成本為m,然后根據(jù)題意將甲、乙、丙三種方式的每盒成本和利潤用x表示出來即可求解.【詳解】設(shè)每千克A、B、C三種水果的成本分別為為x、y、z,依題意得:
6x+3y+z=12.5x,
∴3y+z=6.5x,
∴每盒甲的銷售利潤=12.5x?20%=2.5x
乙種方式每盒成本=2x+6y+2z=2x+13x=15x,
乙種方式每盒售價=12.5x?(1+20%)÷(1-25%)=20x,
∴每盒乙的銷售利潤=20x-15x=5x,
設(shè)丙每盒成本為m,依題意得:m(1+40%)?0.8-m=1.2x,
解得m=10x.
∴當銷售甲、乙、丙三種方式的水果數(shù)量之比為2:2:5時,
總成本為:12.5x?2+15x?2+10x?5=105x,
總利潤為:2.5x?2+5x×2+1.2x?5=21x,
銷售的總利潤率為×100%=20%,
故答案為:20%.此題考查了三元一次方程的實際應(yīng)用,分析題意,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解題的關(guān)鍵.11、111【解析】
由圖可知添加一個邊長為1的正方形即可補成一個完整的正方形,由此即可得出答案.【詳解】解:由圖可知添加一個邊長為1的正方形即可補成一個面積為36的正方形,故第一個空和第二個空均應(yīng)填1,而大正方形的邊長為x+1,故x+1=6,x=1,故答案為:1,1,1.此題是信息題,首先讀懂題意,正確理解題目解題意圖,然后抓住解題關(guān)鍵,可以探索得到大正方形的邊長為x+1,而大正方形面積為36,由此可以求出結(jié)果.12、50°【解析】
根據(jù)三角形中位線定理可得EF∥AB,進而可求出∠EFC的度數(shù).【詳解】∵EF是中位線,∴DE∥AB,∴∠EFC=∠B=50°,故答案為:50°.本題考查了三角形中位線定理,解題的關(guān)鍵是熟記三角形中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.13、1【解析】
根據(jù)“頻數(shù):組距=2且組距為3”可得答案.【詳解】根據(jù)題意知,該小組的頻數(shù)為2×3=1.故答案為:1.本題考查了頻數(shù)分布直方圖,解題的關(guān)鍵是根據(jù)題意得出頻數(shù):組距=2.三、解答題(本大題共5個小題,共48分)14、(1)∠DGC=45°;(2)∠DGC=45°不會變化;(3)四邊形AGFM是正方形【解析】
(1)根據(jù)對稱性及正方形性質(zhì)可得∠CDF=60°=∠DFC,再利用三角形外角∠DFC=∠FDE+∠DPF可求∠DPC度數(shù);(2)由(1)知△DFC為等腰三角形,得出DF=DC,求出∠DFC=45o+∠EDF,由∠DFC=∠DGC+∠EDF可得∠DGC=45o;(3)證明FG=MF=MA=AG,∠AGF=90o,即可得出結(jié)論.【詳解】(1)△FDE與ADE關(guān)于DE對稱∴△FDE≌△ADE∴∠FDE=∠ADE=15o,AD=FD∴∠ADF=2∠FDE=30o∵ABCD為正方形∴AD=DC=FD,∠ADC=∠DAC=∠DFE=90o∴∠FDC=∠ADC-∠ADF=60o∴△DFC為等邊三角形∴∠DFC=60o∵∠DFC為△DGF外角∴∠DFC=∠FDE+∠DGC∴∠DGC=∠DFC-∠FDE=60-15o=45o(2)不變.證明:由(1)知△DFC為等腰三角形,DF=DC∴∠DFC=∠DCF=(180o-∠CDF)=90o-∠CDF①∵∠CDF=90o-∠ADF=90o-2∠EDF②將②代入①得∠DFC=45o+∠EDF∵∠DFC=∠DGC+∠EDF∴∠DGC=45o(3)四邊形AMFG為正方形.證明:∵M為Rt△ADE中斜邊DE的中點∴AM=DE∵M為Rt△FED中斜邊DE的中點∴FM=DE=AM=MD由(1)知△AED≌△FED∴AD=DF,∠ADG=∠FDG△ADG與△FDG中,AD=DF,∠ADG=∠FDG,DG=DG∴△ADG≌△FDG,由(2)知∠DGC=45o∴∠DGA=∠DGF=45o,AG=FG,∠AGF=∠DGA+∠DGF=90o∵DB為正方形對角線,∴∠ADB=∠45o,∵∠ADG=∠GDF=∠ADB=22.5o∵DM=FM∴∠GDF=∠MFD=22.5o∵∠GMF=∠GDF+∠MFD=45o∴∠GMF=∠DGF=45o∴MF=FG∴FG=MF=MA=AG,∠AGF=90o∴四邊形AMFG為正方形。本題主要考查了正方形的性質(zhì)與判定.解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.15、證明見解析.【解析】分析:延長DE交AB于點G,連接AD.構(gòu)建全等三角形△AED≌△DFB(SAS),則由該全等三角形的對應(yīng)邊相等證得結(jié)論.詳解:證明:延長DE交AB于點G,連接AD.∵四邊形BCDE是平行四邊形,∴ED∥BC,ED=BC.∵點E是AC的中點,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED與△DFB中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE.點睛:本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì).全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當?shù)呐卸l件.16、(1)
平均數(shù)(分)
中位數(shù)(分)
眾數(shù)(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成績好些(3)初中代表隊選手成績較為穩(wěn)定【解析】解:(1)填表如下:
平均數(shù)(分)
中位數(shù)(分)
眾數(shù)(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成績好些.∵兩個隊的平均數(shù)都相同,初中部的中位數(shù)高,∴在平均數(shù)相同的情況下中位數(shù)高的初中部成績好些.(3)∵,,∴<,因此,初中代表隊選手成績較為穩(wěn)定.(1)根據(jù)成績表加以計算可補全統(tǒng)計表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義回答.(2)根據(jù)平均數(shù)和中位數(shù)的統(tǒng)計意義分析得出即可.(3)分別求出初中、高中部的方差比較即可.17、(1)2;(2)見解析;(3)﹣1≤x<﹣2或2<x≤1【解析】
(1)依據(jù)在y=|x|+1中,令x=﹣2,則y=2,可得m的值;(2)將圖中的各點用平滑的曲線連接,即可畫出該函數(shù)的圖象;(3)依據(jù)函數(shù)圖象,即可得到當2<y≤3時,x的取值范圍.【詳解】(1)在y=|x|+1中,令x=﹣2,則y=2,∴m=2,故答案為2;(2)如圖所示:(3)由圖可得,當2<y≤3時,x的取值范圍為﹣1≤x<﹣2或2<x≤1.故答案為﹣1≤x<﹣2或2<x≤1.本題考查了一次函數(shù)的圖象與性質(zhì)以及一次函數(shù)圖象上點的坐標特征,根據(jù)題意畫出圖形,利用數(shù)形結(jié)合思想是解題的關(guān)鍵.18、(1)y=x+2;(2),t=秒或t=+4秒時,△DSN≌△BOC;(3)M(+4)或M()或M().【解析】
(1)求出B,C的坐標,由待定系數(shù)法可求出答案;(2)分別過點M,N作MQ⊥x軸,NP⊥x軸,垂足分別為點Q,P.分兩種情況:(Ⅰ)當點M在線段AB上運動時,(Ⅱ)當點M在線段AB的延長線上運動時,由DS=BO=2,可得出t的方程,解得t的值即可得出答案;(3)設(shè)點M(a,﹣a+2),N(b,),P(2,c),點B(0,2),分三種情況:(Ⅰ)當以BM,BP為鄰邊構(gòu)成菱形時,(Ⅱ)當以BP為對角線,BM為邊構(gòu)成菱形時,(Ⅲ)當以BM為對角線,BP為邊構(gòu)成菱形時,由菱形的性質(zhì)可得出方程組,解方程組即可得出答案.【詳解】解:(1)∵直線y=﹣x+2與x軸、y軸分別交于A、B兩點,∴x=0時,y=2,y=0時,x=2,∴A(2,0),B(0,2),∴OB=AO=2,在Rt△COB中,∠BOC=90°,∠BCA=30°,∴OC=2,∴C(﹣2,0),設(shè)直線BC的解析式為y=kx+b,代入B,C兩點的坐標得,,∴k=,b=2,∴直線BC的解析式為y=x+2;(2)分別過點M,N作MQ⊥x軸,NP⊥x軸,垂足分別為點Q,P.(Ⅰ)如圖1,當點M在線段AB上運動時,∵CN=2t,AM=t,OB=OA=2,∠BOA=∠BOC=90°,∴∠BAO=∠ABO=45°,∵∠BCO=30°,∴NP=MQ=t,∵MQ⊥x軸,NP⊥x軸,∴∠NPQ=∠MQA=90°,NP∥MQ,∴四邊形NPQM是矩形,∴NS∥x軸,∵AD⊥x軸,∴AS∥MQ∥y軸,∴四邊形MQAS是矩形,∴AS=MQ=NP=t,∵NS∥x軸,AS∥MQ∥y軸,∴∠DNS=∠BCO,∠DSN=∠DAO=∠BOC=90°,∴當DS=BO=2時,△DSN≌△BOC(AAS),∵D(2,+2),∴DS=+2﹣t,∴+2﹣t=2,∴t=(秒);(Ⅱ)當點M在線段AB的延長線上運動時,如圖2,同理可得,當DS=BO=2時,△DSN≌△BOC(AAS),∵DS=t﹣(+2),∴t﹣(+2)=2,∴t=+4(秒),綜合以上可得,t=秒或t=+4秒時,△DSN≌△BOC.(3)存在以M、B、N、P為頂點的四邊形是菱形:M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).∵M是直線AB在第二象限上的一點,點N,P分別在直線BC,直線AD上,∴設(shè)點M(a,﹣a+2),N(b,b+2),P(2,c),點B(0,2),(Ⅰ)當以BM,BP為鄰邊構(gòu)成菱形時,如圖3,∵∠CBO=60°,∠OBA=∠OAB=∠PAF=45°,∴∠DBA=∠MBN=∠PBN=75°,∴∠MBE=45°,∠PBF=30°,∴MB=ME,PF=AP,PB=2PF=AP,∵四邊形BMNP是菱形,∴,解得,a=﹣2﹣2,∴M(﹣2﹣2,2+4)(此時點N與點C重合),(Ⅱ)當以BP為對角線,BM為邊構(gòu)成菱形時,如圖4,過點B作EF∥x軸,ME⊥EF,NF⊥EF,同(Ⅰ)可知,∠MBE=45°,∠NBF=30°,由四邊形BMNP是菱形和BM=BN得:,解得:a=﹣2﹣4,∴M(﹣2﹣4,2+6),(Ⅲ)當以BM為對角線,BP為邊構(gòu)成菱形時,如圖5,作NE⊥y軸,BF⊥AD,∴∠BNE=30°,∠PBF=60°,由四邊形BMNP是菱形和BN=BP得,,解得:a=﹣2+2,∴M(﹣2+2,2).綜合上以得出,當以M、B、N、P為頂點的四邊形是菱形時,點M的坐標為:M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).本題考查了待定系數(shù)法求函數(shù)解析式,動點問題與全等結(jié)合,菱形探究,熟練掌握相關(guān)方法是解題的關(guān)鍵.一、填空題(本大題共5個小題,每小題4分,共20分)19、且【解析】
分式方程去分母得:2x=3a﹣4(x﹣1),解得:,∵分式方程的解為非負數(shù),∴,解得:又當x=1時,分式方程無意義,∴把x=1代入得∴要使分式方程有意義,必須∴a的取值范圍是且20、【解析】
先根據(jù)折疊的性質(zhì)得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=,所以EF=.【詳解】解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四邊形ABHD為矩形,
∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,
在Rt△DHC中,DH=,∴EF=DH=.故答案為:.本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.也考查了勾股定理.21、或或1【解析】
根據(jù)點P所在的線段分類討論,再分析每種情況下腰的情況,然后利用直角三角形的性質(zhì)和勾股定理分別求值即可.【詳解】解:①當點P在AB上時,由∠ABC=120°,此時只能是以∠PBE為頂角的等腰三角形,BP=BE,過點B作BF⊥PE于點F,如下圖所示∴∠FBE=∠ABC=10°,EP=2EF∴∠BEF=90°-∠FBE=30°∵,點是的中點∴BE=在Rt△BEF中,BF=根據(jù)勾股定理:EF=∴EP=2EF=;②當點P在AD上時,過點B作BF⊥AB于F,過點P作PG⊥BC,如下圖所示∵∠ABC=120°∴∠A=10°∴∠ABF=90°-∠A=30°在Rt△ABF中AF=,BF=∴BP≥BF>BE,EP≥BF>BE∴此時只能是以∠BPE為頂角的等腰三角形,BP=PE,∴PG=BF=,EG=根據(jù)勾股定理:EP=;③當點P在CD上時,過點E作EF⊥CD于F,過點B作BG⊥CD由②可知:BE的中垂線與CD無交點,∴此時BP≠PE∵∠A=10°,四邊形ABCD為平行四邊形∴∠C=10°在Rt△BCG中,∠CBG=90°-∠C=30°,CG=根據(jù)勾股定理:BG=∴BP≥BG>BE∵EF⊥CD,BG⊥CD,點E為BC的中點∴EF為△BCG的中位線∴EF=∴此時只能是以∠BEP為頂角的等腰三角形,BE=PE=1.綜上所述:的長為或或1.故答案為:或或1此題考查的是等腰三角形的性質(zhì)、直角三角形的性質(zhì)和勾股定理,掌握三線合一、30°所對的直角邊是斜邊的一半、利用勾股定理解直角三角形和分類討論的數(shù)學思想是解決此題的關(guān)鍵.22、2【解析】試題分析:一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.把x=1代入方程,即可得到一個關(guān)于m的方程,從而求得m的值,還要注意一元二次方程的系數(shù)不能等于1.試題解析:把x=1代入(m-1)x2+5x+m2-3m+2=1中得:m2-3m+2=1,解得:m=1或m=2,∵m-1≠1,∴m≠1,∴m=2.考點:一元二次方程的解.23、3.1【解析】
根據(jù)折疊的特點得到,,可設(shè),在Rt△AGE中,利用得到方程即可求出x.【詳解】解∵折疊,∴,.設(shè),∴.在中,,∴,解得.故答案為:3.1.此題主要考查矩形的折疊問題,解題的關(guān)鍵是熟知矩形的性質(zhì)及勾股定理的應(yīng)用.二、解答題(本大題共3個小題,共30分)24、(1)4,;(2)(1,)【解析】
(1)根據(jù)題意可得OB=6,OA=8,假設(shè)是矩形,那么CD⊥BO,結(jié)合三角形中位線性質(zhì)可得CD=,從而即可得出m的值;同樣假設(shè)是菱
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46875-2025進入二氧化碳長輸管道介質(zhì)質(zhì)量要求
- 試述取得時效制度
- 2026紅河縣公安局公開招聘警務(wù)輔助人員(24人)參考考試題庫附答案解析
- 2026山東事業(yè)單位統(tǒng)考省文物考古研究院招聘初級綜合類崗位2人備考考試試題附答案解析
- 2026聯(lián)勤保障部隊第九八〇醫(yī)院(白求恩國際和平醫(yī)院)公開招聘30人(第一季)備考考試試題附答案解析
- 2026江蘇連云港市灌南縣公安局警務(wù)輔助人員招聘65人備考考試題庫附答案解析
- 2026國家稅務(wù)總局廣西壯族自治區(qū)稅務(wù)系統(tǒng)公開招聘事業(yè)單位工作人員20人備考考試題庫附答案解析
- 落實生豬生產(chǎn)管理制度
- 如何在生產(chǎn)現(xiàn)場推行5s管理制度
- 藥品生產(chǎn)企業(yè)安全制度
- 2026年遼寧省盤錦市高職單招語文真題及參考答案
- 近五年貴州中考物理真題及答案2025
- 2026年南通科技職業(yè)學院高職單招職業(yè)適應(yīng)性測試備考試題含答案解析
- 浙江省2026年1月普通高等學校招生全國統(tǒng)一考試英語試題(含答案含聽力原文含音頻)
- JTG-D40-2002公路水泥混凝土路面設(shè)計規(guī)范-PDF解密
- 《雅思閱讀精講》
- 產(chǎn)前檢查的操作評分標準
- 50年同學聚會邀請函(十二篇)
- 臨時用水施工方案
- LOTO上鎖掛牌安全培訓課件
- 江西省房屋建筑與裝飾工程消耗量定額及統(tǒng)一基價表
評論
0/150
提交評論