2025屆九江市第一中學高二數(shù)學第一學期期末復習檢測模擬試題含解析_第1頁
2025屆九江市第一中學高二數(shù)學第一學期期末復習檢測模擬試題含解析_第2頁
2025屆九江市第一中學高二數(shù)學第一學期期末復習檢測模擬試題含解析_第3頁
2025屆九江市第一中學高二數(shù)學第一學期期末復習檢測模擬試題含解析_第4頁
2025屆九江市第一中學高二數(shù)學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆九江市第一中學高二數(shù)學第一學期期末復習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)(且,)的一個極值點為2,則的最小值為()A. B.C. D.72.已知數(shù)列滿足:,數(shù)列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.3.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}4.若直線的斜率為,則的傾斜角為()A. B.C. D.5.過拋物線焦點的直線與拋物線交于兩點,,拋物線的準線與軸交于點,則的面積為()A. B.C. D.6.空間直角坐標系中、、)、,其中,,,,已知平面平面,則平面與平面間的距離為()A. B.C. D.7.已知集合,則()A. B.C. D.8.如圖,在四面體OABC中,,,,點在線段上,且,為的中點,則等于()A. B.C. D.9.已知直線過點,當直線與圓有兩個不同的交點時,其斜率的取值范圍是()A. B.C. D.10.已知矩形,,,沿對角線將折起,若二面角的余弦值為,則與之間距離為()A. B.C. D.11.已知函數(shù),若,,則實數(shù)的取值范圍是A. B.C. D.12.已知圓過點,,且圓心在軸上,則圓的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在[1,3]單調遞增,則a的取值范圍___14.北京天壇的圓丘壇為古代祭天的場所,分上、中、下三層,上層的中心是一塊天心石,圍繞它的第一圈有9塊石板,從第二圈開始,每一圈比前一圈多9塊.已知每層圈數(shù)相同,共有9圈,則下層比上層多______塊石板15.已知關于的不等式恒成立,則實數(shù)的取值范圍是___________.16.空間四邊形中,,,,,,,則與所成角的余弦值等于___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某廠接受了一項加工業(yè)務,加工出來的產(chǎn)品(單位:件)按標準分為A,B,C,D四個等級.加工業(yè)務約定:對于A級品、B級品、C級品,廠家每件分別收取加工費90元,50元,20元;對于D級品,廠家每件要賠償原料損失費50元.該廠有甲、乙兩個分廠可承接加工業(yè)務.甲分廠加工成本費為25元/件,乙分廠加工成本費為20元/件.廠家為決定由哪個分廠承接加工業(yè)務,在兩個分廠各試加工了100件這種產(chǎn)品,并統(tǒng)計了這些產(chǎn)品的等級,整理如下:甲分廠產(chǎn)品等級的頻數(shù)分布表等級ABCD頻數(shù)40202020乙分廠產(chǎn)品等級的頻數(shù)分布表等級ABCD頻數(shù)28173421(1)分別估計甲、乙兩分廠加工出來的一件產(chǎn)品為A級品的概率;(2)分別求甲、乙兩分廠加工出來的100件產(chǎn)品的平均利潤,以平均利潤為依據(jù),廠家應選哪個分廠承接加工業(yè)務?18.(12分)已知圓C的圓心為,且圓C經(jīng)過點(1)求圓C的一般方程;(2)若圓與圓C恰有兩條公切線,求實數(shù)m的取值范圍19.(12分)已知雙曲線中心在原點,離心率為2,一個焦點(1)求雙曲線方程;(2)設Q是雙曲線上一點,且過點F、Q的直線l與y軸交于點M,若,求直線l的方程20.(12分)已知函數(shù)在時有極值0.(1)求函數(shù)的解析式;(2)記,若函數(shù)有三個零點,求實數(shù)的取值范圍.21.(12分)已知三個條件①圓心在直線上;②圓的半徑為2;③圓過點在這三個條件中任選一個,補充在下面的問題中,并作答(注:如果選擇多個條件分別解答,按第一個解答計分)(1)已知圓過點且圓心在軸上,且滿足條件________,求圓的方程;(2)在(1)的條件下,直線與圓交于、兩點,求弦長的最小值及相應的值22.(10分)已知直線,圓.(1)若l與圓C相切,求切點坐標;(2)若l與圓C交于A,B,且,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出函數(shù)的導數(shù),由給定極值點可得a與b的關系,再借助“1”的妙用求解即得.【詳解】對求導得:,因函數(shù)的一個極值點為2,則,此時,,,因,即,因此,在2左右兩側鄰近的區(qū)域值一正一負,2是函數(shù)的一個極值點,則有,又,,于是得,當且僅當,即時取“=”,所以的最小值為.故選:B2、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當且僅當,即時取等號,所以故選:D3、D【解析】根據(jù)集合交集的運算法則計算即可.【詳解】∵A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B={-2,-1,0}.故選:D.4、C【解析】設直線l傾斜角為,根據(jù)題意得到,即可求解.【詳解】設直線l的傾斜角為,因為直線的斜率是,可得,又因為,所以,即直線的傾斜角為.故選:C.5、B【解析】畫出圖形,利用已知條件結合拋物線的定義求解邊長CF,BK,然后求解三角形的面積即可【詳解】如圖,設拋物線的準線為,過作于,過作于,過作于,設,則根據(jù)拋物線的定義可得,,,的面積為,故選:.6、A【解析】由已知得,,,設向量與向量、都垂直,由向量垂直的坐標運算可求得,再由平面平行和距離公式計算可得選項.【詳解】解:由已知得,,,設向量與向量、都垂直,則,即,取,,又平面平面,則平面與平面間的距離為,故選:A.7、C【解析】解一元二次不等式求集合A,再由集合的交運算求即可.【詳解】由題設,,∴.故選:C.8、D【解析】利用空間向量的加法與減法可得出關于、、的表達式.【詳解】.故選:D.9、A【解析】設直線方程,利用圓與直線的關系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點故選:A10、C【解析】過點在平面內(nèi)作,過點在平面內(nèi)作,以、為鄰邊作平行四邊形,連接,分析可知二面角的平面角為,利用余弦定理求出,證明出,再利用勾股定理可求得的長.【詳解】過點在平面內(nèi)作,過點在平面內(nèi)作,以、為鄰邊作平行四邊形,連接,因為,,,則,因為,由等面積法可得,同理可得,由勾股定理可得,同理可得,,因為四邊形為平行四邊形,且,故四邊形為矩形,所以,,因為,所以,二面角的平面角為,在中,,,由余弦定理可得,,,,則,,因為,平面,平面,則,,由勾股定理可得.故選:C.11、A【解析】函數(shù),若,,可得,解得或,則實數(shù)的取值范圍是,故選A.12、B【解析】根據(jù)圓心在軸上,設出圓的方程,把點,的坐標代入圓的方程即可求出答案.【詳解】因為圓的圓心在軸上,所以設圓的方程為,因為點,在圓上,所以,解得,所以圓的方程是.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由在區(qū)間上恒成立來求得的取值范圍.【詳解】依題意在區(qū)間上恒成立,在上恒成立,所以.故答案為:14、1458【解析】首先由條件可得第圈的石板為,且為等差數(shù)列,利用基本量求和,即可求解.【詳解】設第圈的石板為,由條件可知數(shù)列是等差數(shù)列,且上層的第一圈為,且,所以,上層的石板數(shù)為,下層的石板數(shù)為.所以下層比上層多塊石板.故答案為:145815、【解析】參變分離,可得,設,求導分析單調性,可得,即得解【詳解】因為,所以不等式可化為,設,則,設,由于故在上單調遞增,且,則當時,,單調遞減;當時,,單調遞增,所以,則,即.故答案為:16、【解析】計算出的值,利用空間向量的數(shù)量積可得出的值,即可得解.【詳解】,,所以,,所以,.所以,與所成角的余弦值為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)甲分廠加工出來的級品的概率為,乙分廠加工出來的級品的概率為;(2)選甲分廠,理由見解析.【解析】(1)根據(jù)兩個頻數(shù)分布表即可求出;(2)根據(jù)題意分別求出甲乙兩廠加工件產(chǎn)品的總利潤,即可求出平均利潤,由此作出選擇【詳解】(1)由表可知,甲廠加工出來的一件產(chǎn)品為級品的概率為,乙廠加工出來的一件產(chǎn)品為級品的概率為;(2)甲分廠加工件產(chǎn)品的總利潤為元,所以甲分廠加工件產(chǎn)品的平均利潤為元每件;乙分廠加工件產(chǎn)品的總利潤為元,所以乙分廠加工件產(chǎn)品的平均利潤為元每件故廠家選擇甲分廠承接加工任務【點睛】本題主要考查古典概型的概率公式的應用,以及平均數(shù)的求法,并根據(jù)平均值作出決策,屬于基礎題18、(1)(2)【解析】(1)設圓C的一般方程為.由圓C的圓心和圓C經(jīng)過點求解;(2)根據(jù)圓與圓C恰有兩條公切線,由圓O與圓C相交求解.【小問1詳解】解:設圓C的一般方程為∵圓C的圓心,∴即又圓C經(jīng)過點,∴解得經(jīng)檢驗得圓C的一般方程為;【小問2詳解】由(1)知圓C的圓心為,半徑為5∵圓與圓C恰有兩條公切線,∴圓O與圓C相交∴∵,∴∴m的取值范圍是19、(1)(2)或【解析】(1)依題意設所求的雙曲線方程為,則,再根據(jù)離心率求出,即可求出,從而得到雙曲線方程;(2)依題意可得直線的斜率存在,設,即可得到的坐標,依題意可得或,分兩種情況分別求出的坐標,再根據(jù)的雙曲線上,代入曲線方程,即可求出,即可得解;【小問1詳解】解:設所求的雙曲線方程為(,),則,,∴,又則,∴所求的雙曲線方程為【小問2詳解】解:∵直線l與y軸相交于M且過焦點,∴l(xiāng)的斜率一定存在,則設.令得,∵且M、Q、F共線于l,∴或當時,,,∴,∵Q在雙曲線上,∴,∴,當時,,代入雙曲線可得:,∴綜上所求直線l的方程為:或20、(1)(2)【解析】(1)求出函數(shù)的導函數(shù),由在時有極值0,則,兩式聯(lián)立可求常數(shù)a,b的值,從而得解析式;(2)利用導數(shù)研究函數(shù)的單調性、極值,根據(jù)函數(shù)圖象的大致形狀可求出參數(shù)的取值范圍.【小問1詳解】由可得,因為在時有極值0,所以,即,解得或,當時,,函數(shù)在R上單調遞增,不滿足在時有極值,故舍去.所以常數(shù)a,b的值分別為.所以.【小問2詳解】由(1)可知,,令,解得,當或時,當時,,的遞增區(qū)間是和,單調遞減區(qū)間為,當有極大值,當有極小值,要使函數(shù)有三個零點,則須滿足,解得.21、(1)條件選擇見解析,圓的方程為(2)的最小值為,相應【解析】(1)選擇條件①或②或③,求得圓心和半徑,由此求得圓的方程.(2)首先求得直線過定點,根據(jù)求得最短弦長以及此時的值.【小問1詳解】若選條件①,由題意知,圓心是方程的解,解得,所以,設半徑為,則.則圓的方程為:若選條件②,設圓心,由題意知,所以圓心,半徑為,所以圓的方程為:若選條件③,設圓心,由題意知,即有,解得,圓心為,且半徑為,所以圓的方程為:【小問2詳解】由(1)圓的方程為:,圓心為,半徑.直線過定點,要使弦長最短,,,,,直線的斜率,也即直線的斜率為,所以.,,所以弦長最小值為22、(1)(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論