山東省即墨一中2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
山東省即墨一中2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
山東省即墨一中2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
山東省即墨一中2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
山東省即墨一中2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省即墨一中2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.2.已知向量,,,若,則()A. B. C. D.3.函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是()A. B. C. D.4.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種5.若,則“”的一個充分不必要條件是A. B.C.且 D.或6.復(fù)數(shù)的模為().A. B.1 C.2 D.7.若滿足,且目標(biāo)函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.68.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.9.下列四個結(jié)論中正確的個數(shù)是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.410.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知滿足,則()A. B. C. D.12.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)函數(shù)的定義域是____________.14.如圖,在矩形中,為邊的中點,,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積為.15.已知向量,,且,則實數(shù)m的值是________.16.若關(guān)于的不等式在上恒成立,則的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計,可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)180°而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.(1)求關(guān)于的函數(shù)關(guān)系式;(2)為了達(dá)到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時腰的長度.18.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.19.(12分)設(shè)的內(nèi)角、、的對邊長分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.20.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實數(shù)的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.21.(12分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.22.(10分)已知函數(shù)(,)滿足下列3個條件中的2個條件:①函數(shù)的周期為;②是函數(shù)的對稱軸;③且在區(qū)間上單調(diào).(Ⅰ)請指出這二個條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.2、A【解析】

根據(jù)向量坐標(biāo)運算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運算;關(guān)鍵是明確若兩向量平行,則.3、B【解析】

對分類討論,當(dāng),函數(shù)在單調(diào)遞減,當(dāng),根據(jù)對勾函數(shù)的性質(zhì),求出單調(diào)遞增區(qū)間,即可求解.【詳解】當(dāng)時,函數(shù)在上單調(diào)遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點睛】本題考查函數(shù)單調(diào)性,熟練掌握簡單初等函數(shù)性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.4、B【解析】

分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當(dāng)醫(yī)院B只有1人,則共有種不同分配方案,當(dāng)醫(yī)院B有2人,則共有種不同分配方案,所以當(dāng)醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當(dāng)乙在醫(yī)院A時,共有種不同分配方案,當(dāng)乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當(dāng)醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應(yīng)用,在做此類題時,要做到分類不重不漏,考查學(xué)生分類討論的思想,是一道中檔題.5、C【解析】,∴,當(dāng)且僅當(dāng)時取等號.故“且”是“”的充分不必要條件.選C.6、D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式求解.【詳解】解:,復(fù)數(shù)的模為.故選:D.【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.7、A【解析】

作出可行域,由,可得.當(dāng)直線過可行域內(nèi)的點時,最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當(dāng)直線過可行域內(nèi)的點時,最大,即最大,最大值為2.解方程組,得..,當(dāng)且僅當(dāng),即時,等號成立.的最小值為8.故選:.【點睛】本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.8、D【解析】

根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關(guān)系式.9、C【解析】

由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方程的性質(zhì)和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當(dāng)時,可得成立,當(dāng)時,只需滿足,所以“”是“”成立的充分不必要條件.【點睛】本題主要考查了命題的真假判定及應(yīng)用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應(yīng)用等知識點的應(yīng)用,逐項判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.10、C【解析】,令解得當(dāng),的圖像如下圖當(dāng),的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.11、A【解析】

利用兩角和與差的余弦公式展開計算可得結(jié)果.【詳解】,.故選:A.【點睛】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.12、C【解析】

由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,,即,解得;因為所以,當(dāng)時,.故選:C.【點睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡中的應(yīng)用,難度一般.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

要使函數(shù)有意義,則,即,解得,故函數(shù)的定義域是.14、【解析】由題意,可得所得到的幾何體是由一個圓柱挖去兩個半球而成;其中,圓柱的底面半徑為1,母線長為2;體積為;兩個半球的半徑都為1,則兩個半球的體積為;則所求幾何體的體積為.考點:旋轉(zhuǎn)體的組合體.15、1【解析】

根據(jù)即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.【點睛】本題考查向量垂直的充要條件,向量數(shù)量積的坐標(biāo)運算.16、【解析】

分類討論,時不合題意;時求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉(zhuǎn)化為函數(shù)最小值,化簡得,構(gòu)造放縮函數(shù)對自變量再研究,可解,【詳解】令;當(dāng)時,,不合題意;當(dāng)時,,令,得或,所以在區(qū)間和上單調(diào)遞減.因為,且在區(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,,則,即.當(dāng)時,,當(dāng)時,則.設(shè),則.當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為:【點睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍.利用導(dǎo)數(shù)解決此類問題可以運用分離參數(shù)法;如果無法分離參數(shù),可以考慮對參數(shù)或自變量進(jìn)行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)側(cè)面積取得最大值時,等腰三角形的腰的長度為【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過求導(dǎo)分析,得在時取得極大值,也是最大值.試題解析:(1)設(shè)交于點,過作,垂足為,在中,,,在中,,所以S,(2)要使側(cè)面積最大,由(1)得:令,所以得,由得:當(dāng)時,,當(dāng)時,所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以在時取得極大值,也是最大值;所以當(dāng)時,側(cè)面積取得最大值,此時等腰三角形的腰長答:側(cè)面積取得最大值時,等腰三角形的腰的長度為.18、(1)證明見詳解;(2)【解析】

(1)取中點,根據(jù),利用線面垂直的判定定理,可得平面,最后可得結(jié)果.(2)利用建系,假設(shè)長度,可得,以及平面的一個法向量,然后利用向量的夾角公式,可得結(jié)果.【詳解】(1)取中點,連接,如圖由,所以由,平面所以平面,又平面所以(2)假設(shè),由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標(biāo)系,如圖設(shè)平面的一個法向量為則令,所以則直線與平面所成角的正弦值為【點睛】本題考查線面垂直、線線垂直的應(yīng)用,還考查線面角,學(xué)會使用建系的方法來解決立體幾何問題,將幾何問題代數(shù)化,化繁為簡,屬中檔題.19、(1);(2).【解析】

(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當(dāng)且僅當(dāng)時取最大值.故的最大值為.【點睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應(yīng)用,以及利用三角恒等變換求函數(shù)的最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題20、(1);(2)見解析.【解析】

(1)求出導(dǎo)數(shù),問題轉(zhuǎn)化為在上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;(2)分別設(shè)切點橫坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義寫出切線方程,問題轉(zhuǎn)化為證明兩直線重合,只需滿足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點存在性定理即可證明存在.【詳解】(1),函數(shù)在上單調(diào)遞增等價于在上恒成立.令,得,所以在單調(diào)遞減,在單調(diào)遞增,則.因為,則在上恒成立等價于在上恒成立;又,所以,即.(2)設(shè)的切點橫坐標(biāo)為,則切線方程為……①設(shè)的切點橫坐標(biāo)為,則,切線方程為……②若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得即令,則所以,函數(shù)在區(qū)間上單調(diào)遞增,,使得時總有又時,在上總有解綜上,函數(shù)與總存在公切線.【點睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的恒成立問題,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)證明方程有解,屬于難題.21、(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設(shè)為曲線上一點,點到曲線的圓心的距離,結(jié)合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標(biāo)方程為,∴曲線的普通方程為,即.(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論