版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
陜西省延安市實驗中學大學區(qū)校際聯(lián)盟2025屆數(shù)學高二上期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線y=x+1與圓x2+y2=1的位置關系為A.相切B.相交但直線不過圓心C.直線過圓心D.相離2.等差數(shù)列x,,,…的第四項為()A.5 B.6C.7 D.83.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長的一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺4.已知橢圓的焦點分別為,,橢圓上一點P與焦點的距離等于6,則的面積為()A.24 B.36C.48 D.605.由小到大排列的一組數(shù)據(jù):,其中每個數(shù)據(jù)都小于,另一組數(shù)據(jù)2、的中位數(shù)可以表示為()A. B.C. D.6.已知隨機變量X,Y滿足,,且,則的值為()A.0.2 B.0.3C.0..5 D.0.67.在中,角A,B,C所對的邊分別為a,b,c,已知,則的面積為()A. B.C. D.8.平行六面體的各棱長均相等,,,則異面直線與所成角的余弦值為()A. B.C. D.9.已知函數(shù)為偶函數(shù),且當時,,則不等式的解集為()A. B.C. D.10.函數(shù)的圖象如圖所示,則下列大小關系正確的是()A.B.C.D.11.已知直線l:的傾斜角為,則()A. B.1C. D.-112.若命題“,”是假命題,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在等腰直角中,,為半圓弧上異于,的動點,當半圓弧繞旋轉的過程中,有下列判斷:①存在點,使得;②存在點,使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請?zhí)钌纤心阏J為正確的結果的序號).14.已知過點作拋物線的兩條切線,切點分別為A、B,直線經(jīng)過拋物線C的焦點F,則___________15.以雙曲線的右焦點為圓心,為半徑的圓與的一條漸近線交于兩點,若,則雙曲線的離心率為_________16.已知的展開式中項的系數(shù)是,則正整數(shù)______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓心為的圓,滿足下列條件:圓心在軸上,與直線相切,且被軸截得的弦長為,圓的面積小于(1)求圓的標準方程;(2)設過點的直線與圓交于不同的兩點、,以、為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程,如果不存在,請說明理由18.(12分)已知橢圓的右頂點為,上頂點為.離心率為,.(1)求橢圓的標準方程;(2)若,是橢圓上異于長軸端點的兩點(斜率不為0),已知直線,且,垂足為,垂足為,若,且的面積是面積的5倍,求面積的最大值.19.(12分)圓心為的圓經(jīng)過點,,且圓心在上,(1)求圓的標準方程;(2)過點作直線交圓于且,求直線的方程.20.(12分)已知函數(shù)(Ⅰ)若的圖象在點處的切線與軸負半軸有公共點,求的取值范圍;(Ⅱ)當時,求的最值21.(12分)已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,且.(1)求A;(2)若,求外接圓面積的最小值.22.(10分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)在上的最大值和最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出圓心到直線的距離d,與圓的半徑r比較大小即可判斷出直線與圓的位置關系,同時判斷圓心是否在直線上,即可得到正確答案解:由圓的方程得到圓心坐標(0,0),半徑r=1則圓心(0,0)到直線y=x+1的距離d==<r=1,把(0,0)代入直線方程左右兩邊不相等,得到直線不過圓心所以直線與圓的位置關系是相交但直線不過圓心故選B考點:直線與圓的位置關系2、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.3、A【解析】由題意可知,十二個節(jié)氣其日影長依次成等差數(shù)列,設冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項公式,求出,即可求出,從而得到答案【詳解】設從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設公差為尺.由題可知,所以,,,,故選:A4、A【解析】由題意可得出與、、的值,在根據(jù)橢圓定義得的值,即可得到是直角三角形,即可求出的面積.【詳解】由題意知,.根據(jù)橢圓定義可知,是直角三角形,.故選:A.5、C【解析】先根據(jù)題意對數(shù)據(jù)進行排列,然后由中位數(shù)的定義求解即可【詳解】因為由小到大排列的一組數(shù)據(jù):,其中每個數(shù)據(jù)都小于,所以另一組數(shù)據(jù)2、從小到大的排列為,所以這一組數(shù)的中位數(shù)為,故選:C6、D【解析】利用正態(tài)分布的計算公式:,【詳解】且又故選:D7、A【解析】由余弦定理計算求得角,根據(jù)三角形面積公式計算即可得出結果.【詳解】由余弦定理得,,∴,∴,故選:A8、B【解析】利用基底向量表示出向量,,即可根據(jù)向量夾角公式求出【詳解】如圖所示:不妨設棱長為1,,,所以==,,,即,故異面直線與所成角的余弦值為故選:B注意事項:1.將答案寫在答題卡上2.本卷共10小題,共80分.9、D【解析】結合導數(shù)以及函數(shù)的奇偶性判斷出的單調(diào)性,由此化簡不等式來求得不等式的解集.【詳解】當時,單調(diào)遞增,,所以單調(diào)遞增.因為是偶函數(shù),所以當時,單調(diào)遞減.,,,或.即不等式的解集為.故選:D10、C【解析】根據(jù)導數(shù)的幾何意義可得答案.【詳解】因為函數(shù)在某點處的導數(shù)值表示的是此點處切線的斜率,所以由圖可得,故選:C11、A【解析】由傾斜角求出斜率,列方程即可求出m.【詳解】因為直線l的傾斜角為,所以斜率.所以,解得:.故選:A12、A【解析】根據(jù)命題與它的否定命題一真一假,寫出該命題的否定命題,再求實數(shù)的取值范圍【詳解】解:命題“,”是假命題,則它的否定命題“,”是真命題,時,不等式為,顯然成立;時,應滿足,解得,所以實數(shù)的取值范圍是故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】①當D為中點,且A,B,C,D四點共面時,可證得四邊形ABCD為正方形即可判斷①;②當D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,作圖分析驗證可判斷④.【詳解】①當D為中點,且A,B,C,D四點共面時,連結BD,交AC于,則為AC中點,此時,且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,此時有:平面ABC,,又因為,所以平面CDB,所以,故②正確;③,當平面平面ABC,且D為中點時,h有最大值;當A,B,C,D四點共面時h有最小值0,此時為平面圖形,不是立體圖形,故四面體D-ABC無最小值,故③錯誤.④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,取AC中點O,連結DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設,則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.14、64【解析】用字母進行一般化研究,先求出切點弦方程,再聯(lián)立化簡,最后代入數(shù)據(jù)計算【詳解】設,點處的切線方程為聯(lián)立,得由,得即,解得所以點處的切線方程為,整理得同理,點處的切線方程為設為兩切線的交點,則所以在直線上即直線AB的方程為又直線AB經(jīng)過焦點所以,即聯(lián)立得所以所以本題中所以故答案為:64【點睛】結論點睛:過點作拋物線的兩條切線,切點弦的方程為15、【解析】由題意可得,化簡整理得到,進而可求出結果.【詳解】因為雙曲線的一個焦點到其一條漸近線為,所有由題意可得,即,則,所以離心率,故答案為:.16、4【解析】由已知二項式可得展開式通項為,根據(jù)已知條件有,即可求出值.詳解】由題設,,∴,則且為正整數(shù),解得.故答案為:4.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)不存在,理由見解析.【解析】(1)設圓心,設圓的半徑為,可得出,根據(jù)已知條件可得出關于實數(shù)的方程,求出的值,可得出的值,進而可得出圓的標準方程;(2)分析可知直線的斜率存在,可設直線的方程為,設點、,將直線的方程與圓的方程聯(lián)立,由可求得的取值范圍,列出韋達定理,分析可得,可求得點的坐標,由已知可得出,求出的值,檢驗即可得出結論.【小問1詳解】解:設圓心,設圓的半徑為,則,由題意可得,由勾股定理可得,則,由題意可得,解得,則,因此,圓的標準方程為.【小問2詳解】解:若直線的斜率不存在,此時直線與軸重合,則、、三點共線,不合乎題意.所以,直線的斜率存在,可設直線的方程為,設點、,聯(lián)立,可得,,解得或,由韋達定理可得,,則,因為四邊形為平行四邊形,則,因為,則,則,解得,因為或,因此,不存直線,使得直線與恰好平行.18、(1)(2)面積的最大值為【解析】(1)由離心率為,,得,解得,,,進而可得答案(2)設直線的方程為,,,,,聯(lián)立直線與橢圓的方程,結合韋達定理可得,,由弦長公式可得,點到直線的距離,則,,由的面積是面積的5倍,解得,再計算的最大值,即可【小問1詳解】解:因為離心率為,,所以,解得,,,所以【小問2詳解】解:設直線的方程為,,,,,聯(lián)立,得,所以,,所以,點到直線的距離,所以,,因為的面積是面積的5倍,所以所以或,又因為,是橢圓上異于長軸端點的兩點,所以,所以,令,所以,因為在上單調(diào)遞增,所以,(當時,取等號),所以面積的最大值為.19、(1);(2)或.【解析】(1)求出線段的垂直平分線方程,求出此直線與已知直線的交點坐標即為圓心坐標,再求得半徑后可得圓的標準方程;(2)檢驗直線斜率不存在時是否滿足題意,在斜率存在時設方程為,求得圓心到直線的距離,由勾股定理得弦長,由弦長為8得參數(shù),得直線方程【詳解】(1)由已知,中點坐標為,垂直平分線方程為則由解得,所以圓心,因此半徑所以圓的標準方程(2)由可得圓心到直線的距離當直線斜率不存在時,其方程為,當直線斜率存在時,設其方程為,則,解得,此時其方程為,所以直線方程為或.【點睛】方法點睛:本題考查求圓的標準方程,考查直線與圓相交弦長.求弦長方法是幾何法:即求出圓心到弦所在直線距離,由勾股定理求得弦長.求直線方程時注意檢驗直線斜率不存在的情形20、(Ⅰ);(Ⅱ)答案見解析.【解析】(Ⅰ)求導數(shù).求得切線方程,由切線與軸的交點在負半軸可得的范圍;(Ⅱ)求導數(shù),由的正負確定單調(diào)性,極值得最值【詳解】命題意圖本題主要考查導數(shù)在函數(shù)問題中的應用解析(Ⅰ)由題可知,,故可得的圖象在點處的切線方程為令,可得由題意可得,即,解得,即的取值范圍為(Ⅱ)當時,,易知在上單調(diào)遞增又,當時,,此時單調(diào)遞減,當時,,此時單調(diào)遞增,無最大值【點睛】關鍵點點睛:本題考查用導數(shù)的幾何意義,考查用導數(shù)求函數(shù)的的最值.解題關鍵是求出導函數(shù),由的正負確定單調(diào)性,得函數(shù)的極值,從而可得最值21、(1)(2)【解析】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煤礦人力資源管理專項監(jiān)督方案
- 車間安全培訓提綱課件
- 2026年及未來5年市場數(shù)據(jù)中國汽車雙凸輪軸市場發(fā)展前景預測及投資戰(zhàn)略數(shù)據(jù)分析研究報告
- 2026年無人駕駛洗地機項目可行性研究報告
- 2026年自然資本估值金融項目營銷方案
- 園林古建筑開放空間規(guī)劃方案
- 殼管式換熱器設計
- 上海市封浜高中2026屆語文高三第一學期期末經(jīng)典模擬試題含解析
- 2026年佛山市高明區(qū)富灣湖小學公開招聘英語、語文臨聘教師備考題庫參考答案詳解
- 2026年NIBS趙詩杰實驗室招聘實驗技術員科研助理備考題庫及答案詳解1套
- 醫(yī)院檢查、檢驗結果互認制度
- 學堂在線 雨課堂 學堂云 科研倫理與學術規(guī)范 期末考試答案
- 福建省廈門市七年級語文上學期期末測試題(含答案)
- 無人機駕駛員培訓計劃及大綱
- 五軸加工管理制度
- 4M變化點管理記錄表
- Tickets-please《請買票》 賞析完整
- 《馬克的怪病》課件
- 部編版八年級道德與法治上冊《樹立維護國家利益意識捍衛(wèi)國家利益》教案及教學反思
- 基于單片機的智能家居控制系統(tǒng)設計
- 鍋爐大件吊裝方案
評論
0/150
提交評論