版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
機器學習簡介OutlineWhatismachinelearning(ML)TypesofmachinelearningWorkflowPopularmodelsApplicationsFuturesWhatismachinelearningTrainingset(labelsknown)Testset(labelsunknown)f()=“apple”f()=“tomato”f()=“cow”WhatismachinelearningDefinitionMachinelearningreferstoasystemcapableoftheautonomousacquisitionandintegrationofknowledgeMachinelearningisprogrammingcomputerstooptimizeaperformancecriterionusingexampledataorpastexperienceComputerDataAlgorithmProgramKnowledgeKnowledge(new)WhatismachinelearningEverymachinelearningalgorithmhasthreecomponentsRepresentationModel(rules,statistics,instance;logic,KNN,SVM,DNN,…)EvaluationPerformance(accuracy,mse,energy,entropy,…)OptimizationParametersCombinatorialoptimizationConvexoptimizationConstrainedoptimizationTypesofmachinelearningSupervisedlearningTrainingdataincludesdesiredoutputsUnsupervisedlearningTrainingdatadoesnotincludedesiredoutputsSemi-supervisedlearningTrainingdataincludesafewdesiredoutputsReinforcementlearningRewardsfromsequenceofactionsTypesofmachinelearningSupervisedlearningClassification:discreteoutputRegression:continuousoutputBias-variance大家應(yīng)該也有點累了,稍作休息大家有疑問的,可以詢問和交流8TrainingandValidationDataFullDataSetTrainingDataValidationDataIdea:traineachmodelonthe“trainingdata”andthentesteachmodel’saccuracyonthevalidationdataUnderfitting&OverfittingPredictiveErrorModelComplexityErroronTrainingDataErroronTestDataIdealRangeforModelComplexityOverfittingUnderfittingTypesofmachinelearningUnsupervisedlearningClusteringDimensionalityreductionFactoranalysisTypesofmachinelearningSemi-supervisedlearningClusteringorclassificationTypesofmachinelearningReinforcementlearningRobot&controlWorkflowPredictionTrainingLabelsTrainingTrainingImageFeaturesImageFeaturesTestingTestImageLearnedmodelLearnedmodelSlidecredit:D.HoiemandL.LazebnikWorkflowFeaturesWorkflowModelsLogic,RulesStatistical,BlackboxmodelStatic,dynamicmodelOnlinelearningEnsemblelearningWorkflowArchitectureModelFeatureHardwarePopularmodelsLinearmodel:logisticregression,lineardiscriminantanalysis,linearregression(withbasisfunction)PopularmodelsNearestneighborFeature&distancePopularmodelsSupportvectormachinePopularmodelsArtificialneuralnetworkPopularmodelsDecisiontreePopularmodelsCollaborativefilteringPopularmodelsHierarchicalclusteringK-meansSpectralclusteringManifoldlearningPopularmodelsHiddenmarkovmodelConditionalrandomfieldsApplicationsApplicationsApplicationsApplicationsApplicationsApplicationsApplicationsApplicationsApplicationsAttentionApplicationsImageclassificationApplicationsApplicationsBrainmachineinterfaceApplicationsApplicationsApplicationsApplicationsApplication
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 園藝工操作技能知識考核試卷含答案
- 鋼琴鍵盤機械制作工常識模擬考核試卷含答案
- 煉油樹脂工安全實踐競賽考核試卷含答案
- 焊接設(shè)備操作工測試驗證競賽考核試卷含答案
- 智能硬件裝調(diào)員QC管理強化考核試卷含答案
- 養(yǎng)雞工操作知識測試考核試卷含答案
- 瀝青裝置操作工崗前客戶關(guān)系管理考核試卷含答案
- 金屬材酸洗工崗前技能綜合實踐考核試卷含答案
- 水土保持監(jiān)測工安全風險能力考核試卷含答案
- 選煤工安全教育考核試卷含答案
- 2025遼寧近海產(chǎn)業(yè)發(fā)展集團有限公司招聘2人筆試歷年常考點試題專練附帶答案詳解2套試卷
- G520-1~2(2020年合訂本)鋼吊車梁(6m~9m)(2020年合訂本)
- 干部人事檔案專項審核認定表填寫模板
- 【學考】高中英語學業(yè)水平測試-2500詞匯表(含音標)
- 語C圈洗白標準手冊
- 安全管理人員專題培訓《風險分級管控與隱患排查治理培訓》學習培訓課件
- 47沿著史實去追尋帶著思想旅行金屬的化學性質(zhì)
- 通信工程設(shè)計概念與作用概要資料講解
- 郵電通信大樓項目管理方案
- 臥式容器任意液位高度下液體容積的計算(Excel表)
- 各國駐華使領(lǐng)館及駐華外國機構(gòu)聘雇外國人許可及管理辦法
評論
0/150
提交評論