版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆河北省大名縣一中高考沖刺數(shù)學(xué)模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)滿足,則()A. B. C.2 D.2.已知復(fù)數(shù)z滿足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i3.如圖,在中,,是上的一點,若,則實數(shù)的值為()A. B. C. D.4.若的內(nèi)角滿足,則的值為()A. B. C. D.5.一個超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.66.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點對稱;②函數(shù)是周期函數(shù);③當(dāng)時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④7.若向量,則()A.30 B.31 C.32 D.338.由實數(shù)組成的等比數(shù)列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.10.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.11.已知雙曲線的一個焦點為,點是的一條漸近線上關(guān)于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.12.雙曲線的漸近線方程是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)點P在函數(shù)的圖象上,點Q在函數(shù)的圖象上,則線段PQ長度的最小值為_________14.已知是函數(shù)的極大值點,則的取值范圍是____________.15.(5分)某膳食營養(yǎng)科研機構(gòu)為研究牛蛙體內(nèi)的維生素E和鋅、硒等微量元素(這些元素可以延緩衰老,還能起到抗癌的效果)對人體的作用,現(xiàn)從只雌蛙和只雄蛙中任選只牛蛙進行抽樣試驗,則選出的只牛蛙中至少有只雄蛙的概率是____________.16.已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?非體育迷體育迷合計男女1055合計(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63518.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(19.(12分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點.(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.20.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大小;(2)求點到平面的距離.21.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點M在棱PA上運動,當(dāng)直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.22.(10分)已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當(dāng)直線經(jīng)過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標(biāo)為(1)求橢圓的方程;(2)點為內(nèi)一點,為坐標(biāo)原點,滿足,若點恰好在圓上,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法.2、A【解析】
由虛數(shù)單位i的運算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數(shù)單位i的運算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.3、B【解析】
變形為,由得,轉(zhuǎn)化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點共線?(為平面內(nèi)任一點,)4、A【解析】
由,得到,得出,再結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關(guān)系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.5、A【解析】
根據(jù)定義,表示出數(shù)列的通項并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個數(shù).【詳解】由題意可知首項為2,設(shè)第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當(dāng)?shù)闹悼梢詾?;即?個這種超級斐波那契數(shù)列,故選:A.【點睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準(zhǔn)確,屬于中檔題.6、A【解析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點知②錯誤;函數(shù)定義域為,最值點即為極值點,由知③錯誤;令,在和兩種情況下知均無零點,知④正確.【詳解】由題意得:定義域為,,為奇函數(shù),圖象關(guān)于原點對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當(dāng)時,,,,此時與無交點;當(dāng)時,,,,此時與無交點;綜上所述:與無交點,④正確.故選:.【點睛】本題考查函數(shù)與導(dǎo)數(shù)知識的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點個數(shù)問題的求解;本題綜合性較強,對于學(xué)生的分析和推理能力有較高要求.7、C【解析】
先求出,再與相乘即可求出答案.【詳解】因為,所以.故選:C.【點睛】本題考查了平面向量的坐標(biāo)運算,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.8、C【解析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項公式是解決本題的關(guān)鍵.9、A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.10、C【解析】
作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準(zhǔn)線:,作,;,設(shè),故,,.故選:C【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.11、B【解析】
由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點睛】本題考查雙曲線的簡單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計算能力,屬于中檔題.12、C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意雙曲線的簡單性質(zhì)的合理運用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由解析式可分析兩函數(shù)互為反函數(shù),則圖象關(guān)于對稱,則點到的距離的最小值的二倍即為所求,利用導(dǎo)函數(shù)即可求得最值.【詳解】由題,因為與互為反函數(shù),則圖象關(guān)于對稱,設(shè)點為,則到直線的距離為,設(shè),則,令,即,所以當(dāng)時,,即單調(diào)遞減;當(dāng)時,,即單調(diào)遞增,所以,則,所以的最小值為,故答案為:【點睛】本題考查反函數(shù)的性質(zhì)的應(yīng)用,考查利用導(dǎo)函數(shù)研究函數(shù)的最值問題.14、【解析】
方法一:令,則,,當(dāng),時,,單調(diào)遞減,∴時,,,且,∴在上單調(diào)遞增,時,,,且,∴在上單調(diào)遞減,∴是函數(shù)的極大值點,∴滿足題意;當(dāng)時,存在使得,即,又在上單調(diào)遞減,∴時,,,所以,這與是函數(shù)的極大值點矛盾.綜上,.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點,由知須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時,與相切于原點,所以根據(jù)與的圖象關(guān)系,可得.15、【解析】
記只雌蛙分別為,只雄蛙分別為,從中任選只牛蛙進行抽樣試驗,其基本事件為,共15個,選出的只牛蛙中至少有只雄蛙包含的基本事件為,共9個,故選出的只牛蛙中至少有只雄蛙的概率是.16、-2【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時所在的頂點即可.【詳解】由題意得:目標(biāo)函數(shù)在點B取得最大值為7,在點A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【點睛】本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)無關(guān);(2),.【解析】
(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計男301545女451055合計7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計算,得.因為3.030<3.841,所以我們沒有充分理由認(rèn)為“體育迷”與性別有關(guān).(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=18、(I)π;(II)-【解析】
(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【點睛】本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.19、(1)證明見解析;(2)【解析】
(1)取的中點,連接,易得,進而可證明四邊形為平行四邊形,即,從而可證明平面;(2)取中點,中點,連接,易證平面,平面,從而可知兩兩垂直,以點為坐標(biāo)原點,向量的方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系,進而求出平面的法向量,及平面的法向量為,由,可求得平面與平面所成的二面角的正弦值.【詳解】(1)證明:如圖1,取的中點,連接.,,,,且,四邊形為平行四邊形,.又平面,平面,平面.(2)如圖2,取中點,中點,連接.,,平面平面,平面平面,平面,平面,兩兩垂直.以點為坐標(biāo)原點,向量的方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系.由,可得,在等腰梯形中,,易知,.則,,設(shè)平面的法向量為,則,取,得.設(shè)平面的法向量為,則,取,得.因為,,,所以,所以平面與平面所成的二面角的正弦值為.【點睛】本題考查線面平行的證明,考查二面角的求法,利用空間向量法是解決本題的較好方法,屬于中檔題.20、(1);(2).【解析】
(1)建立空間坐標(biāo)系,通過求向量與向量的夾角,轉(zhuǎn)化為異面直線與直線所成的角的大小;(2)先求出面的一個法向量,再用點到面的距離公式算出即可.【詳解】以為原點,所在直線分別為軸建系,設(shè)所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因為,,設(shè)是面的一個法向量,所以有即,令,,故,又,所以點到平面的距離為.【點睛】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學(xué)生的數(shù)學(xué)建模以及數(shù)學(xué)運算能力.21、(1)見解析(2)【解析】
(1)設(shè)的中點為,連接.由展開圖可知,,.為的中點,則有,根據(jù)勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時,即是的中點建立空間直角坐標(biāo)系,求出與平面的法向量利用公式即可求得結(jié)果.【詳解】(1)設(shè)AC的中點為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年9月國開電大行管??啤渡鐣{(diào)查研究與方法》期末紙質(zhì)考試試題及答案
- 戶外環(huán)境中的緊急情況識別
- 勞資專管員考試試題及答案
- 飼草產(chǎn)品加工工崗前考核試卷及答案
- 新疆和田地區(qū)和田市輔警考試公安基礎(chǔ)知識考試真題庫及答案
- 四平市公務(wù)員遴選考試模擬試題及答案
- 醫(yī)師考核口腔試題及答案
- 教育綜合考前模擬卷(二)及答案
- 2025職業(yè)病危害及預(yù)防措施試題帶答案
- 音樂學(xué)小組考試題及答案
- DB62∕T 4203-2020 云杉屬種質(zhì)資源異地保存庫營建技術(shù)規(guī)程
- 年終歲末的安全培訓(xùn)課件
- 中醫(yī)康復(fù)面試題目及答案
- 《人工智能導(dǎo)論》高職人工智能通識課程全套教學(xué)課件
- 中華醫(yī)學(xué)會麻醉學(xué)分會困難氣道管理指南
- 南京旅館住宿管理辦法
- 【香港職業(yè)訓(xùn)練局(VTC)】人力調(diào)查報告書2024-珠寶、鐘表及眼鏡業(yè)(繁體版)
- 客戶分配管理辦法管理
- 燃?xì)馊霊舭矙z培訓(xùn)
- 高中地理思政融合課《全球氣候變暖》
- 2025年中考語文一輪復(fù)習(xí):民俗類散文閱讀 講義(含練習(xí)題及答案)
評論
0/150
提交評論