2025屆云南省昭通市水富市云天化中學(xué)高考數(shù)學(xué)押題試卷含解析_第1頁
2025屆云南省昭通市水富市云天化中學(xué)高考數(shù)學(xué)押題試卷含解析_第2頁
2025屆云南省昭通市水富市云天化中學(xué)高考數(shù)學(xué)押題試卷含解析_第3頁
2025屆云南省昭通市水富市云天化中學(xué)高考數(shù)學(xué)押題試卷含解析_第4頁
2025屆云南省昭通市水富市云天化中學(xué)高考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆云南省昭通市水富市云天化中學(xué)高考數(shù)學(xué)押題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線:的左、右兩個(gè)焦點(diǎn)分別為,,若存在點(diǎn)滿足,則該雙曲線的離心率為()A.2 B. C. D.52.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β3.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.4.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.5.已知函數(shù),滿足對(duì)任意的實(shí)數(shù),都有成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.6.復(fù)數(shù)()A. B. C.0 D.7.已知函數(shù),且),則“在上是單調(diào)函數(shù)”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件8.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為()(注:)A.1624 B.1024 C.1198 D.15609.拋物線的焦點(diǎn)為,準(zhǔn)線為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)線段的中點(diǎn)在上的投影為,則的最大值是()A. B. C. D.10.函數(shù)的對(duì)稱軸不可能為()A. B. C. D.11.已知復(fù)數(shù),,則()A. B. C. D.12.若樣本的平均數(shù)是10,方差為2,則對(duì)于樣本,下列結(jié)論正確的是()A.平均數(shù)為20,方差為4 B.平均數(shù)為11,方差為4C.平均數(shù)為21,方差為8 D.平均數(shù)為20,方差為8二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)、滿足,且可行域表示的區(qū)域?yàn)槿切?,則實(shí)數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實(shí)數(shù)等于______.14.已知向量,且,則實(shí)數(shù)的值是__________.15.如圖,在平面四邊形中,點(diǎn),是橢圓短軸的兩個(gè)端點(diǎn),點(diǎn)在橢圓上,,記和的面積分別為,,則______.16.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對(duì)邊分別為,若.(1)求角的大?。唬?)若,為外一點(diǎn),,求四邊形面積的最大值.18.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點(diǎn)M在棱PA上運(yùn)動(dòng),當(dāng)直線BM與平面PAC所成的角最大時(shí),求直線MA與平面MBC所成角的正弦值.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;(2)若直線與曲線、曲線在第一象限交于兩點(diǎn),且,點(diǎn)的坐標(biāo)為,求的面積.20.(12分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風(fēng)雨歷程,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現(xiàn)從年齡在,,內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機(jī)選取3人進(jìn)行座談,用表示年齡在)內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有名市民的年齡在的概率為.當(dāng)最大時(shí),求的值.21.(12分)已知函數(shù),,設(shè).(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)設(shè)方程(其中為常數(shù))的兩根分別為,,證明:.(注:是的導(dǎo)函數(shù))22.(10分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實(shí)數(shù),使得不等式在上恒成立?若存在,求出的最小值;若不存在,請(qǐng)說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點(diǎn)睛】本題主要考查雙曲線的定義及離心率,離心率求解時(shí),一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.2、B【解析】

根據(jù)線面平行、線面垂直和空間角的知識(shí),判斷A選項(xiàng)的正確性.由線面平行有關(guān)知識(shí)判斷B選項(xiàng)的正確性.根據(jù)面面垂直的判定定理,判斷C選項(xiàng)的正確性.根據(jù)面面平行的性質(zhì)判斷D選項(xiàng)的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點(diǎn)睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.3、C【解析】

根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.4、C【解析】

根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.【點(diǎn)睛】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,注意函數(shù)奇偶性的應(yīng)用,屬于基礎(chǔ)題.5、B【解析】

由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實(shí)數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實(shí)數(shù)的取值范圍是.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)的單調(diào)性求參數(shù),一般要分析每支函數(shù)的單調(diào)性,同時(shí)還要考慮分段點(diǎn)處函數(shù)值的大小關(guān)系,考查運(yùn)算求解能力,屬于中等題.6、C【解析】略7、C【解析】

先求出復(fù)合函數(shù)在上是單調(diào)函數(shù)的充要條件,再看其和的包含關(guān)系,利用集合間包含關(guān)系與充要條件之間的關(guān)系,判斷正確答案.【詳解】,且),由得或,即的定義域?yàn)榛颍ㄇ遥┝?,其在單調(diào)遞減,單調(diào)遞增,在上是單調(diào)函數(shù),其充要條件為即.故選:C.【點(diǎn)睛】本題考查了復(fù)合函數(shù)的單調(diào)性的判斷問題,充要條件的判斷,屬于基礎(chǔ)題.8、B【解析】

根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項(xiàng)公式和前項(xiàng)和,利用累加法求得數(shù)列的通項(xiàng)公式,進(jìn)而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項(xiàng)和為,又令,設(shè)的前項(xiàng)和為.易,,進(jìn)而得,所以,則,所以,所以.故選:B【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查累加法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.9、B【解析】

試題分析:設(shè)在直線上的投影分別是,則,,又是中點(diǎn),所以,則,在中,所以,即,所以,故選B.考點(diǎn):拋物線的性質(zhì).【名師點(diǎn)晴】在直線與拋物線的位置關(guān)系問題中,涉及到拋物線上的點(diǎn)到焦點(diǎn)的距離,焦點(diǎn)弦長,拋物線上的點(diǎn)到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時(shí),常??紤]用拋物線的定義進(jìn)行問題的轉(zhuǎn)化.象本題弦的中點(diǎn)到準(zhǔn)線的距離首先等于兩點(diǎn)到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點(diǎn)到焦點(diǎn)的距離,從而與弦長之間可通過余弦定理建立關(guān)系.10、D【解析】

由條件利用余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.11、B【解析】分析:利用的恒等式,將分子、分母同時(shí)乘以,化簡整理得詳解:,故選B點(diǎn)睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問題.12、D【解析】

由兩組數(shù)據(jù)間的關(guān)系,可判斷二者平均數(shù)的關(guān)系,方差的關(guān)系,進(jìn)而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方差為.故選:D.【點(diǎn)睛】樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點(diǎn)時(shí),此時(shí),直線:,與:的交點(diǎn)為,該點(diǎn)也在直線:上,故,故答案為:;.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,屬于基礎(chǔ)題.14、【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點(diǎn)睛:由向量的數(shù)乘和坐標(biāo)加減法運(yùn)算求得,然后利用向量共線的坐標(biāo)表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.15、【解析】

依題意易得A、B、C、D四點(diǎn)共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進(jìn)一步得到D橫坐標(biāo),再由計(jì)算比值即可.【詳解】因?yàn)椋訟、B、C、D四點(diǎn)共圓,直徑為,又A、C關(guān)于x軸對(duì)稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點(diǎn)是E,所以D的橫坐標(biāo)為,故.故答案為:.【點(diǎn)睛】本題考查橢圓中的四點(diǎn)共圓及三角形面積之比的問題,考查學(xué)生基本計(jì)算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.16、【解析】

算法的功能是求的值,根據(jù)輸出的值,分別求出當(dāng)時(shí)和當(dāng)時(shí)的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當(dāng)時(shí),,可得:,或(舍去);當(dāng)時(shí),,可得:(舍去).綜上的值為:.故答案為:.【點(diǎn)睛】本題考查了選擇結(jié)構(gòu)的程序語句,根據(jù)語句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進(jìn)而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當(dāng)時(shí),四邊形的面積取最大值,最大值為.【點(diǎn)睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.18、(1)見解析(2)【解析】

(1)設(shè)的中點(diǎn)為,連接.由展開圖可知,,.為的中點(diǎn),則有,根據(jù)勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時(shí),即是的中點(diǎn)建立空間直角坐標(biāo)系,求出與平面的法向量利用公式即可求得結(jié)果.【詳解】(1)設(shè)AC的中點(diǎn)為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點(diǎn),,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線BM與平面PAC所成的角,且,當(dāng)OM最短時(shí),即M是PA的中點(diǎn)時(shí),最大.由平面ABC,,,,于是以O(shè)C,OB,OD所在直線分別為x軸,y軸,z軸建立如圖示空間直角坐標(biāo)系,則,,設(shè)平面MBC的法向量為,直線MA與平面MBC所成角為,則由得:.令,得,,即.則.直線MA與平面MBC所成角的正弦值為.【點(diǎn)睛】本題考查面面垂直的證明,考查線面成角問題,借助空間向量是解決線面成角問題的關(guān)鍵,難度一般.19、(1)的極坐標(biāo)方程為,的直角坐標(biāo)方程為(2)【解析】

(1)先把曲線的參數(shù)方程消參后,轉(zhuǎn)化為普通方程,再利用求得極坐標(biāo)方程.將,化為,再利用求得曲線的普通方程.(2)設(shè)直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因?yàn)椋?,即,?(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點(diǎn)睛】本題考查極坐標(biāo)方程與直角坐標(biāo)方程、參數(shù)方程與普通方程的轉(zhuǎn)化、極坐標(biāo)的幾何意義,還考查推理論證能力以及數(shù)形結(jié)合思想,屬于中檔題.20、(1)分布列見解析,(1)【解析】

(1)根據(jù)頻率分布直方圖及抽取總?cè)藬?shù),結(jié)合各組頻率值即可求得各組抽取的人數(shù);的可能取值為0,1,1,由離散型隨機(jī)變量概率求法即可求得各概率值,即可得分布列;由數(shù)學(xué)期望公式即可求得其數(shù)學(xué)期望.(1)先求得年齡在內(nèi)的頻率,視為概率.結(jié)合二項(xiàng)分布的性質(zhì),表示出,令,化簡后可證明其單調(diào)性及取得最大值時(shí)的值.【詳解】(1)按分層抽樣的方法拉取的8人中,年齡在的人數(shù)為人,年齡在內(nèi)的人數(shù)為人.年齡在內(nèi)的人數(shù)為人.所以的可能取值為0,1,1.所以,,,所以的分市列為011.(1)設(shè)在抽取的10名市民中,年齡在內(nèi)的人數(shù)為,服從二項(xiàng)分布.由頻率分布直方圖可知,年齡在內(nèi)的頻率為,所以,所以.設(shè),若,則,;若,則,.所以當(dāng)時(shí),最大,即當(dāng)最大時(shí),.【點(diǎn)睛】本題考差了離散型隨機(jī)變量分布列及數(shù)學(xué)期望的求法,二項(xiàng)分布的綜合應(yīng)用,屬于中檔題.21、(1)在上單調(diào)遞增,在上單調(diào)遞減.(2)見解析【解析】

(1)求出導(dǎo)函數(shù),由確定增區(qū)間,由確定減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論