版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省雞西市東方紅林業(yè)局中學2025屆高考數(shù)學三模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()2.設復數(shù)滿足(為虛數(shù)單位),則復數(shù)的共軛復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函數(shù),則的最小值為()A. B. C. D.4.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a5.已知定義在上的偶函數(shù),當時,,設,則()A. B. C. D.6.已知向量,,設函數(shù),則下列關于函數(shù)的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數(shù)7.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.8.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數(shù)是()A.0 B.1 C.2 D.39.已知的展開式中的常數(shù)項為8,則實數(shù)()A.2 B.-2 C.-3 D.310.已知整數(shù)滿足,記點的坐標為,則點滿足的概率為()A. B. C. D.11.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.12.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設集合,,則____________.14.函數(shù)的單調增區(qū)間為__________.15.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.16.在中,已知,,則A的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為,點.(1)求曲線的極坐標方程與直線的直角坐標方程;(2)若直線與曲線交于點,曲線與曲線交于點,求的面積.18.(12分)已知函數(shù),.(1)當時,求不等式的解集;(2)若函數(shù)的圖象與軸恰好圍成一個直角三角形,求的值.19.(12分)已知函數(shù).(1)求函數(shù)的單調遞增區(qū)間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.20.(12分)在平面直角坐標系中,橢圓:的右焦點為(,為常數(shù)),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點.⑴求橢圓的標準方程;⑵若時,,求實數(shù);⑶試問的值是否與的大小無關,并證明你的結論.21.(12分)己知函數(shù).(1)當時,求證:;(2)若函數(shù),求證:函數(shù)存在極小值.22.(10分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大?。唬á颍┤?,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.2、D【解析】
先把變形為,然后利用復數(shù)代數(shù)形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【點睛】此題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎題.3、C【解析】
利用三角恒等變換化簡三角函數(shù)為標準正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點睛】本題考查利用降冪擴角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎題.4、C【解析】
兩復數(shù)相等,實部與虛部對應相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復數(shù)的概念,屬于基礎題.5、B【解析】
根據(jù)偶函數(shù)性質,可判斷關系;由時,,求得導函數(shù),并構造函數(shù),由進而判斷函數(shù)在時的單調性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當時,,則,令則,當時,,則在時單調遞增,因為,所以,即,則在時單調遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數(shù)的性質應用,由導函數(shù)性質判斷函數(shù)單調性的應用,根據(jù)單調性比較大小,屬于中檔題.6、D【解析】
當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數(shù).本題選擇D選項.7、D【解析】
運用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設,,所以,當時,的最小值,故選D.【點睛】本題主要考查了正弦函數(shù)的圖象與性質,其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.8、C【解析】
建立空間直角坐標系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數(shù).【詳解】設正方體邊長為,建立空間直角坐標系如下圖所示,,.①,,所以,故①正確.②,,不存在實數(shù)使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點睛】本小題主要考查空間線線、線面位置關系的向量判斷方法,考查運算求解能力,屬于中檔題.9、A【解析】
先求的展開式,再分類分析中用哪一項與相乘,將所有結果為常數(shù)的相加,即為展開式的常數(shù)項,從而求出的值.【詳解】展開式的通項為,當取2時,常數(shù)項為,當取時,常數(shù)項為由題知,則.故選:A.【點睛】本題考查了兩個二項式乘積的展開式中的系數(shù)問題,其中對所取的項要進行分類討論,屬于基礎題.10、D【解析】
列出所有圓內的整數(shù)點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數(shù),所以所有滿足條件的點是位于圓(含邊界)內的整數(shù)點,滿足條件的整數(shù)點有共37個,滿足的整數(shù)點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學生的應用能力.11、C【解析】
由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關鍵是得到該幾何體的形狀.12、D【解析】
利用余弦定理角化邊整理可得結果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先解不等式,再求交集的定義求解即可.【詳解】由題,因為,解得,即,則,故答案為:【點睛】本題考查集合的交集運算,考查解一元二次不等式.14、【解析】
先求出導數(shù),再在定義域上考慮導數(shù)的符號為正時對應的的集合,從而可得函數(shù)的單調增區(qū)間.【詳解】函數(shù)的定義域為.,令,則,故函數(shù)的單調增區(qū)間為:.故答案為:.【點睛】本題考查導數(shù)在函數(shù)單調性中的應用,注意先考慮函數(shù)的定義域,再考慮導數(shù)在定義域上的符號,本題屬于基礎題.15、【解析】
轉化為,利用二倍角公式可求解得,結合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.16、【解析】
根據(jù)正弦定理,由可得,由可得,將代入求解即得.【詳解】,,即,,,則,,,,則.故答案為:【點睛】本題考查正弦定理和二倍角的正弦公式,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】
(1)根據(jù)題意代入公式化簡即可得到.(2)聯(lián)立極坐標方程通過極坐標的幾何意義求解,再求點到直線的距離即可算出三角形面積.【詳解】解:(1)曲線,即.∴.曲線的極坐標方程為.直線的極坐標方程為,即,∴直線的直角坐標方程為.(2)設,,∴,解得.又,∴(舍去).∴.點到直線的距離為,∴的面積為.【點睛】此題考查參數(shù)方程,極坐標,直角坐標之間相互轉化,注意參數(shù)方程只能先轉化為直角坐標再轉化為極坐標,屬于較易題目.18、(1)(2)【解析】
(1)當時,,由可得,(所以,解得,所以不等式的解集為.(2)由題可得,因為函數(shù)的圖象與軸恰好圍成一個直角三角形,所以,解得,當時,,函數(shù)的圖象與軸沒有交點,不符合題意;當時,,函數(shù)的圖象與軸恰好圍成一個直角三角形,符合題意.綜上,可得.19、(1);(2)【解析】
(1)化簡得到,取,解得答案.(2),解得,根據(jù)余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因為,故,.根據(jù)余弦定理:,..【點睛】本題考查了三角恒等變換,三角函數(shù)單調性,余弦定理,意在考查學生對于三角函數(shù)知識的綜合應用.20、(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數(shù)法可得,橢圓方程為;(2)我們要知道=的條件應用,在于直線交橢圓兩交點M,N的橫坐標為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時,由(2)得;另一方面,當斜率存在即時,可設直線的斜率為,得直線MN:,聯(lián)立直線與橢圓方程,利用韋達定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關試題解析:(1),得:,橢圓方程為(2)當時,,得:,于是當=時,,于是,得到(3)①當=時,由(2)知②當時,設直線的斜率為,,則直線MN:聯(lián)立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無關考點:(1)待定系數(shù)求橢圓方程;(2)橢圓簡單的幾何性質;(3)直線與圓錐曲線21、(1)證明見解析(2)證明見解析【解析】
(1)求導得,由,且,得到,再利用函數(shù)在上單調遞減論證.(2)根據(jù)題意,求導,令,易知;,易知當時,,;當時,函數(shù)單調遞增,而,又,由零點存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因為,且,故,故函數(shù)在上單調遞減,故.(2)依題意,,令,則;而,可知當時,,故函數(shù)在上單調遞增,故當時,;當時,函數(shù)單調遞增,而,又,故,使得,故,使得,即函數(shù)單調遞增,即單調遞增;故當時,,故函數(shù)在上單調遞減,在上單調遞增,故當時,函數(shù)有極小值.【點睛】本題考查利用導數(shù)研究函數(shù)的性質,還考查推理論證能力以及函數(shù)與方程思想,屬于難題.22、(1)(2)【解析】
分析:(1)利用正弦定理以及誘導公式與和角公式,結合特殊角的三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來五年數(shù)字金融企業(yè)數(shù)字化轉型與智慧升級戰(zhàn)略分析研究報告
- 未來五年非甾體抗炎類藥物企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年人造黃油固化槽企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年鮮、冷藏兔肉企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 2025年云南省楚雄楚雄市檢察院書記員考試試題及答案
- 商業(yè)智能BI工具應用手冊(標準版)
- 無人機航拍服務合同
- 2024年湖州市衛(wèi)生系統(tǒng)考試真題
- 服裝生產與質量管理手冊(標準版)
- 網絡信息安全事件應對預案(標準版)
- 周黑鴨加盟合同協(xié)議
- 外賬會計外賬協(xié)議書
- 急性呼吸窘迫綜合征ARDS教案
- 實驗室質量控制操作規(guī)程計劃
- 骨科手術術前宣教
- 【語文】青島市小學三年級上冊期末試卷(含答案)
- 2025版壓力性損傷預防和治療的新指南解讀
- 2025年新疆第師圖木舒克市公安局招聘警務輔助人員公共基礎知識+寫作綜合練習題及答案
- 2026年春節(jié)放假通知模板范文
- 2025年高考真題分類匯編必修三 《政治與法治》(全國)(解析版)
- 現(xiàn)代服務業(yè)勞動課件
評論
0/150
提交評論