2025屆河南省輝縣市一中高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第1頁
2025屆河南省輝縣市一中高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第2頁
2025屆河南省輝縣市一中高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第3頁
2025屆河南省輝縣市一中高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第4頁
2025屆河南省輝縣市一中高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆河南省輝縣市一中高三下學(xué)期一??荚嚁?shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則“”是“的展開式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件2.已知復(fù)數(shù)滿足:,則的共軛復(fù)數(shù)為()A. B. C. D.3.已知傾斜角為的直線與直線垂直,則()A. B. C. D.4.已知函數(shù),若關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.6.根據(jù)如圖所示的程序框圖,當(dāng)輸入的值為3時(shí),輸出的值等于()A.1 B. C. D.7.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或18.如圖所示,直三棱柱的高為4,底面邊長(zhǎng)分別是5,12,13,當(dāng)球與上底面三條棱都相切時(shí)球心到下底面距離為8,則球的體積為()A.1605π3 B.6429.設(shè)曲線在點(diǎn)處的切線方程為,則()A.1 B.2 C.3 D.410.設(shè),,分別是中,,所對(duì)邊的邊長(zhǎng),則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直11.設(shè)雙曲線(,)的一條漸近線與拋物線有且只有一個(gè)公共點(diǎn),且橢圓的焦距為2,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.12.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在邊長(zhǎng)為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點(diǎn)的四面體的外接球的體積為________.14.已知向量,,則______.15.已知等差數(shù)列的前項(xiàng)和為,且,則______.16.若實(shí)數(shù),滿足不等式組,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(Ⅰ)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù),并證明;(Ⅱ)函數(shù)在區(qū)間上的極值點(diǎn)從小到大分別為,,證明:18.(12分)已知函數(shù).(1)若曲線的切線方程為,求實(shí)數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.19.(12分)設(shè),函數(shù),其中為自然對(duì)數(shù)的底數(shù).(1)設(shè)函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點(diǎn);②求證:對(duì)任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.20.(12分)已知函數(shù)(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;(2)求證:21.(12分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點(diǎn),直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點(diǎn)O到直線l的距離為定值.22.(10分)已知函數(shù),其中為實(shí)常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當(dāng)時(shí),設(shè)直線與函數(shù)的圖象相交于不同的兩點(diǎn),,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

求得的二項(xiàng)展開式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識(shí),考查考生的分析問題的能力和計(jì)算能力,難度較易.2、B【解析】

轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡(jiǎn),即得解【詳解】復(fù)數(shù)滿足:所以故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.3、D【解析】

傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式即可得出結(jié)果.【詳解】解:因?yàn)橹本€與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點(diǎn)睛】本題考查了相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式,考查計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】

利用換元法設(shè),則等價(jià)為有且只有一個(gè)實(shí)數(shù)根,分三種情況進(jìn)行討論,結(jié)合函數(shù)的圖象,求出的取值范圍.【詳解】解:設(shè),則有且只有一個(gè)實(shí)數(shù)根.當(dāng)時(shí),當(dāng)時(shí),,由即,解得,結(jié)合圖象可知,此時(shí)當(dāng)時(shí),得,則是唯一解,滿足題意;當(dāng)時(shí),此時(shí)當(dāng)時(shí),,此時(shí)函數(shù)有無數(shù)個(gè)零點(diǎn),不符合題意;當(dāng)時(shí),當(dāng)時(shí),,此時(shí)最小值為,結(jié)合圖象可知,要使得關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,此時(shí).綜上所述:或.故選:A.【點(diǎn)睛】本題考查了函數(shù)方程根的個(gè)數(shù)的應(yīng)用.利用換元法,數(shù)形結(jié)合是解決本題的關(guān)鍵.5、B【解析】

可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.6、C【解析】

根據(jù)程序圖,當(dāng)x<0時(shí)結(jié)束對(duì)x的計(jì)算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時(shí)x>0繼續(xù)運(yùn)行,x=1-2=-1<0,程序運(yùn)行結(jié)束,得,故選C.【點(diǎn)睛】本題考查程序框圖,是基礎(chǔ)題.7、D【解析】

求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點(diǎn)坐標(biāo),代入直線方程,求得的值.【詳解】直線的斜率為,對(duì)于,令,解得,故切點(diǎn)為,代入直線方程得,解得或1.故選:D【點(diǎn)睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.8、A【解析】

設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識(shí)得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點(diǎn)睛】本題考查與球有關(guān)的組合體的問題,解答本題的關(guān)鍵有兩個(gè):(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問題時(shí)常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c9、D【解析】

利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因?yàn)?,且在點(diǎn)處的切線的斜率為3,所以,即.故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查運(yùn)算求解能力,是基礎(chǔ)題10、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點(diǎn):直線與直線的位置關(guān)系11、B【解析】

設(shè)雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關(guān)系,進(jìn)而判斷大小,結(jié)合橢圓的焦距為2,即可求出結(jié)論.【詳解】設(shè)雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標(biāo)準(zhǔn)方程為.故選:B.【點(diǎn)睛】本題考查橢圓和雙曲線的標(biāo)準(zhǔn)方程、雙曲線的簡(jiǎn)單幾何性質(zhì),要注意雙曲線焦點(diǎn)位置,屬于中檔題.12、C【解析】

解:因?yàn)镻={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將三棱錐置入正方體中,利用正方體體對(duì)角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對(duì)角線長(zhǎng)為,所以外接球半徑為,其體積為.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時(shí),要考慮是否能將其置入正(長(zhǎng))方體中,是一道中檔題.14、【解析】

求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運(yùn)算計(jì)算.【詳解】由題意得,.,.,,.故答案為:.【點(diǎn)睛】本題考查求向量的模,掌握數(shù)量積的定義與運(yùn)算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運(yùn)算轉(zhuǎn)化為數(shù)量積的運(yùn)算.15、【解析】

根據(jù)等差數(shù)列的性質(zhì)求得,結(jié)合等差數(shù)列前項(xiàng)和公式求得的值.【詳解】因?yàn)闉榈炔顢?shù)列,所以,解得,所以.故答案為:【點(diǎn)睛】本小題考查等差數(shù)列的性質(zhì),前項(xiàng)和公式的應(yīng)用等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,應(yīng)用意識(shí).16、5【解析】

根據(jù)題意,畫出圖像,數(shù)形結(jié)合,將目標(biāo)轉(zhuǎn)化為求動(dòng)直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區(qū)域如圖陰影區(qū)域所示,令,則.分析知,當(dāng),時(shí),取得最小值,且.【點(diǎn)睛】本題考查線性規(guī)劃問題,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).見解析(Ⅱ)見解析【解析】

(Ⅰ)根據(jù)題意,,利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性,分類討論在區(qū)間的單調(diào)區(qū)間和極值,進(jìn)而研究零點(diǎn)個(gè)數(shù)問題;(Ⅱ)求導(dǎo),,由于在區(qū)間上的極值點(diǎn)從小到大分別為,,求出,利用導(dǎo)數(shù)結(jié)合單調(diào)性和極值點(diǎn),即可證明出.【詳解】解:(Ⅰ),,當(dāng)時(shí),,,在區(qū)間上單調(diào)遞減,,在區(qū)間上無零點(diǎn);當(dāng)時(shí),,在區(qū)間上單調(diào)遞增,,在區(qū)間上唯一零點(diǎn);當(dāng)時(shí),,,在區(qū)間上單調(diào)遞減,,;在區(qū)間上唯一零點(diǎn);綜上可知,函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).(Ⅱ),,由(Ⅰ)知在無極值點(diǎn);在有極小值點(diǎn),即為;在有極大值點(diǎn),即為,由,即,,2…,,,,,,以及的單調(diào)性,,,,,由函數(shù)在單調(diào)遞增,得,,由在單調(diào)遞減,得,即,故.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,通過導(dǎo)數(shù)解決函數(shù)零點(diǎn)個(gè)數(shù)問題和證明不等式,考查轉(zhuǎn)化思想和計(jì)算能力.18、(1);(2)或【解析】

(1)根據(jù)解析式求得導(dǎo)函數(shù),設(shè)切點(diǎn)坐標(biāo)為,結(jié)合導(dǎo)數(shù)的幾何意義可得方程,構(gòu)造函數(shù),并求得,由導(dǎo)函數(shù)求得有最小值,進(jìn)而可知由唯一零點(diǎn),即可代入求得的值;(2)將解析式代入,結(jié)合零點(diǎn)定義化簡(jiǎn)并分離參數(shù)得,構(gòu)造函數(shù),根據(jù)題意可知直線與曲線有兩個(gè)交點(diǎn);求得并令求得極值點(diǎn),列出表格判斷的單調(diào)性與極值,即可確定與有兩個(gè)交點(diǎn)時(shí)的取值范圍.【詳解】(1)依題意,,,設(shè)切點(diǎn)為,,故,故,則;令,,故當(dāng)時(shí),,當(dāng)時(shí),,故當(dāng)時(shí),函數(shù)有最小值,由于,故有唯一實(shí)數(shù)根0,即,則;(2)由,得.所以“在區(qū)間上有兩個(gè)零點(diǎn)”等價(jià)于“直線與曲線在有兩個(gè)交點(diǎn)”;由于.由,解得,.當(dāng)變化時(shí),與的變化情況如下表所示:30+0極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增.又因?yàn)?,,,,故?dāng)或時(shí),直線與曲線在上有兩個(gè)交點(diǎn),即當(dāng)或時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義應(yīng)用,由切線方程求參數(shù)值,構(gòu)造函數(shù)法求參數(shù)的取值范圍,函數(shù)零點(diǎn)的意義及綜合應(yīng)用,屬于難題.19、(1)①函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明見解析;(2)且;【解析】

(1)①令,結(jié)合函數(shù)零點(diǎn)的判定定理判斷即可;②設(shè)切點(diǎn)橫坐標(biāo)為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可.【詳解】解:(1)①當(dāng)時(shí),函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點(diǎn),故函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明:假設(shè)存在,使得直線是曲線的切線,切點(diǎn)橫坐標(biāo)為,且,則切線在點(diǎn)切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數(shù)在和上單調(diào)遞增,又函數(shù)在時(shí),故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當(dāng)時(shí),遞減,故當(dāng)時(shí),,遞增,當(dāng)時(shí),,遞減,故在處取得極大值,不合題意;時(shí),則在遞減,在,遞增,①當(dāng)時(shí),,故在遞減,可得當(dāng)時(shí),,當(dāng)時(shí),,,易證,令,,令,故,則,故在遞增,則,即時(shí),,故在,內(nèi)存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時(shí),,遞增,不合題意;③當(dāng)時(shí),,當(dāng),時(shí),,遞減,當(dāng)時(shí),,遞增,故在處取極小值,符合題意,綜上,實(shí)數(shù)的范圍是且.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.20、(1);(2)見解析.【解析】

(1)將問題轉(zhuǎn)化為對(duì)任意恒成立,換元構(gòu)造新函數(shù)即可得解;(2)結(jié)合(1)可得,令,求導(dǎo)后證明其導(dǎo)函數(shù)單調(diào)遞增,結(jié)合,即可得函數(shù)的單調(diào)區(qū)間和最小值,即可得證.【詳解】(1)對(duì)任意恒成立等價(jià)于對(duì)任意恒成立,令,,則,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;有最大值,.(2)證明:由(1)知,當(dāng)時(shí),即,,,令,則,令,則,在上是增函數(shù),又,當(dāng)時(shí),;當(dāng)時(shí),,在上是減函數(shù),在上是增函數(shù),,即,.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決恒成立問題,考查了利用導(dǎo)數(shù)證明不等式,考查了計(jì)算能力和轉(zhuǎn)化化歸思想,屬于中檔題.21、(I)|FP|=2-32x【解析】

(I)直接利用兩點(diǎn)間距離公式化簡(jiǎn)得到答案.(II)設(shè)Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設(shè)Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點(diǎn)O到直線l的距離為d=m【點(diǎn)睛】本題考查了橢圓內(nèi)的線段長(zhǎng)度,定值問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.22、(1);(2)見解析.【解析】

(1)將所求問題轉(zhuǎn)化為在上有解,進(jìn)一步轉(zhuǎn)化為函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論