無錫職業(yè)技術學院《機器人感知技術》2023-2024學年第一學期期末試卷_第1頁
無錫職業(yè)技術學院《機器人感知技術》2023-2024學年第一學期期末試卷_第2頁
無錫職業(yè)技術學院《機器人感知技術》2023-2024學年第一學期期末試卷_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁無錫職業(yè)技術學院《機器人感知技術》

2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個利用人工智能進行天氣預報的系統(tǒng)中,為了提高預測的精度和時效性,以下哪個因素可能是需要重點關注和改進的?()A.氣象數(shù)據(jù)的質量和多樣性B.模型的復雜度和計算效率C.模型的融合和集成D.以上都是2、在人工智能的情感分析任務中,比如分析社交媒體上用戶對某一產品的態(tài)度是積極還是消極,以下哪種特征提取方法可能會產生重要影響?()A.基于詞袋模型B.基于詞嵌入C.基于語法結構D.基于語義網絡3、在人工智能的目標檢測任務中,假設要在圖像中準確檢測出多個不同類別的物體,以下關于目標檢測算法的描述,正確的是:()A.基于傳統(tǒng)特征的目標檢測算法在復雜場景下的性能優(yōu)于深度學習算法B.深度學習的目標檢測算法,如FasterR-CNN,能夠實現(xiàn)高精度的檢測C.目標檢測算法的性能只取決于模型的復雜度,與訓練數(shù)據(jù)無關D.所有的目標檢測算法都能夠實時處理視頻中的目標檢測任務4、人工智能在醫(yī)療影像診斷中的應用越來越廣泛,但也存在誤診的風險。假設要提高一個基于人工智能的醫(yī)療影像診斷系統(tǒng)的準確性和可靠性,以下哪種方法最為重要?()A.增加訓練數(shù)據(jù)的多樣性B.引入人類專家的監(jiān)督和反饋C.不斷更新和優(yōu)化模型D.以上方法同等重要5、人工智能在藝術創(chuàng)作領域也有所涉足,例如音樂生成和圖像創(chuàng)作。以下關于人工智能在藝術創(chuàng)作中的描述,不正確的是()A.可以根據(jù)給定的風格和主題生成新的音樂作品和圖像B.人工智能創(chuàng)作的藝術作品具有獨特的創(chuàng)新性和表現(xiàn)力C.人工智能在藝術創(chuàng)作中完全取代了人類藝術家的創(chuàng)造力和情感表達D.引發(fā)了關于藝術本質和創(chuàng)造力的思考和討論6、在人工智能的自然語言生成任務中,預訓練語言模型如GPT-3取得了顯著進展。假設要使用預訓練語言模型生成一篇新聞報道,以下哪個步驟是最重要的?()A.選擇合適的預訓練模型B.對模型進行微調C.設計輸入的提示信息D.評估生成的文本質量7、在人工智能的自動駕駛場景中,車輛需要與周圍的其他車輛和基礎設施進行有效的通信和協(xié)作。假設要實現(xiàn)車輛之間的安全、高效的信息交互,以下哪種通信技術和協(xié)議在可靠性和低延遲方面表現(xiàn)最為突出?()A.4G通信B.5G通信C.車聯(lián)網專用短程通信(DSRC)D.Wi-Fi通信8、人工智能中的計算機視覺技術能夠讓計算機理解和分析圖像和視頻內容。假設要開發(fā)一個能夠實時監(jiān)測交通流量和識別車輛類型的系統(tǒng),需要在不同的天氣和光照條件下準確地檢測和分類車輛。以下哪種計算機視覺技術或方法在這種復雜場景下具有更好的魯棒性和準確性?()A.傳統(tǒng)的圖像處理方法B.基于特征提取的方法C.深度學習中的目標檢測算法D.光流法9、當利用人工智能進行輿情監(jiān)測和分析,及時了解公眾對某一事件或話題的看法和情緒傾向,以下哪種數(shù)據(jù)來源和分析手段可能是有效的?()A.社交媒體數(shù)據(jù)和情感分析B.新聞評論數(shù)據(jù)和主題建模C.網絡搜索數(shù)據(jù)和趨勢預測D.以上都是10、人工智能中的遷移學習是一種有效的技術。假設要將一個在大規(guī)模數(shù)據(jù)集上訓練好的圖像分類模型應用到一個特定的小數(shù)據(jù)集上,以下關于遷移學習的描述,正確的是:()A.可以直接將原模型在新數(shù)據(jù)集上進行微調,快速獲得較好的性能B.由于數(shù)據(jù)集差異較大,原模型無法在新數(shù)據(jù)集上使用,需要重新訓練C.遷移學習只能在相同領域的任務之間進行,不同領域無法應用D.遷移學習會導致模型過擬合新數(shù)據(jù)集,降低泛化能力11、在人工智能的情感識別中,假設要從一段較長的語音中準確捕捉到細微的情感變化。以下哪種技術或方法可能有助于實現(xiàn)這一目標?()A.分析語音的韻律特征,如語調、語速B.只關注語音的內容,忽略語音的表現(xiàn)形式C.對語音進行分段處理,分別進行情感識別D.不進行任何預處理,直接分析原始語音12、當利用人工智能進行文本摘要生成,從長篇文章中提取關鍵信息并形成簡潔的摘要,以下哪種策略和算法可能是有效的?()A.基于抽取的方法B.基于生成的方法C.融合抽取和生成的方法D.以上都是13、人工智能中的遷移學習是一種有效的技術,能夠利用已有的知識和模型來解決新的問題。假設我們已經有一個在大規(guī)模圖像數(shù)據(jù)集上訓練好的卷積神經網絡模型,現(xiàn)在要將其應用于一個新的、但相關的圖像分類任務。以下關于遷移學習的說法,哪一項是正確的?()A.可以直接使用原模型的參數(shù),無需任何調整B.只需要對模型的最后幾層進行重新訓練C.遷移學習一定能提高新任務的性能D.原模型的架構和新任務必須完全相同14、在人工智能的圖像識別模型中,假設需要提高模型對不同光照條件下圖像的魯棒性。以下哪種數(shù)據(jù)增強方法可能有效?()A.隨機改變圖像的亮度和對比度B.對圖像進行裁剪和縮放C.旋轉圖像一定角度D.以上都是15、在人工智能的倫理和法律問題中,算法偏見是一個需要關注的重點。假設一個招聘用的人工智能系統(tǒng)由于數(shù)據(jù)偏差導致對某些特定群體的不公平篩選。以下哪種方法在發(fā)現(xiàn)和糾正算法偏見方面最為重要?()A.算法審計B.數(shù)據(jù)清洗和預處理C.引入多樣化的數(shù)據(jù)集D.以上方法綜合運用16、在人工智能的目標檢測任務中,假設圖像中存在多個不同大小和形狀的目標,且目標之間存在遮擋。以下哪種檢測算法能夠較好地應對這種復雜情況?()A.FasterR-CNN,基于區(qū)域建議網絡B.YOLO(YouOnlyLookOnce),一次性檢測所有目標C.SSD(SingleShotMultiBoxDetector),多尺度檢測D.以上都是17、在人工智能的發(fā)展中,機器學習是一個重要的分支。假設一個醫(yī)療團隊想要利用機器學習來預測某種疾病的發(fā)病風險,他們收集了大量患者的基因數(shù)據(jù)、生活習慣、病史等多維度信息。在選擇機器學習算法時,需要考慮數(shù)據(jù)的特點、模型的復雜度和預測的準確性等因素。以下哪種機器學習算法可能最適合這個任務?()A.決策樹算法,通過對特征的逐步劃分進行預測B.線性回歸算法,建立變量之間的線性關系進行預測C.支持向量機算法,尋找最優(yōu)分類超平面進行分類預測D.樸素貝葉斯算法,基于概率計算進行分類18、人工智能在農業(yè)領域的應用具有很大的潛力。以下關于人工智能在農業(yè)應用的描述,不正確的是()A.可以通過圖像識別技術監(jiān)測農作物的生長狀況和病蟲害B.能夠根據(jù)氣象數(shù)據(jù)和土壤條件進行精準的灌溉和施肥決策C.人工智能在農業(yè)中的應用受限于農村地區(qū)的基礎設施和技術水平,發(fā)展緩慢D.借助智能傳感器和物聯(lián)網技術,實現(xiàn)農業(yè)生產的智能化管理19、人工智能中的可解釋性是一個重要的研究方向。假設要解釋一個深度學習模型的決策過程和輸出結果,以下關于模型可解釋性的描述,正確的是:()A.深度學習模型的內部運作非常復雜,無法進行任何形式的解釋B.特征重要性分析可以幫助理解模型對輸入特征的依賴程度C.可視化技術只能展示模型的結構,不能解釋模型的決策邏輯D.模型可解釋性對于實際應用沒有太大意義,只要模型性能好就行20、人工智能在智能客服領域的應用越來越廣泛。以下關于人工智能智能客服的說法,不正確的是()A.能夠快速回答常見問題,提高客戶服務的響應速度B.可以通過自然語言交互理解客戶的需求和意圖C.智能客服能夠完全替代人工客服,提供同樣優(yōu)質和全面的服務D.仍需要不斷改進和優(yōu)化,以提高回答的準確性和滿意度二、簡答題(本大題共3個小題,共15分)1、(本題5分)說明人工智能在水利和水資源管理中的潛力。2、(本題5分)解釋情感計算在人工智能中的研究內容。3、(本題5分)說明人工智能對就業(yè)市場的影響和應對策略。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)研究一個使用人工智能的智能客服投訴處理系統(tǒng),分析其如何分類和解決用戶投訴。2、(本題5分)分析一個基于人工智能的智能招聘系統(tǒng),探討其如何篩選簡歷和評估候選人。3、(本題5分)考察一個利用人工智能進行股票預測的系統(tǒng),分析其數(shù)據(jù)來源、模型構建和預測效果。4、(本題5分)研究一個利用人工智能進行傳統(tǒng)建筑風格融合創(chuàng)新的案例,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論