版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)西北師范大學(xué)《深度學(xué)習(xí)算法》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)要評(píng)估一個(gè)深度學(xué)習(xí)模型在乳腺X光影像診斷中的性能,以下哪個(gè)指標(biāo)是最重要的?()A.準(zhǔn)確率B.召回率C.F1值D.特異性2、在人工智能的圖像超分辨率重建任務(wù)中,例如將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種技術(shù)和網(wǎng)絡(luò)結(jié)構(gòu)可能會(huì)發(fā)揮重要作用?()A.殘差網(wǎng)絡(luò)B.注意力機(jī)制C.對(duì)抗生成網(wǎng)絡(luò)D.以上都是3、人工智能在醫(yī)療領(lǐng)域有廣泛的應(yīng)用前景。假設(shè)要開發(fā)一個(gè)能夠輔助醫(yī)生診斷疾病的系統(tǒng),需要對(duì)大量的醫(yī)療數(shù)據(jù)進(jìn)行分析。以下哪種技術(shù)可能有助于提高診斷的準(zhǔn)確性?()A.數(shù)據(jù)挖掘B.虛擬現(xiàn)實(shí)C.增強(qiáng)現(xiàn)實(shí)D.3D打印4、生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種熱門的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN由一個(gè)生成器和一個(gè)判別器組成,它們相互競(jìng)爭(zhēng),共同提高生成效果B.生成器的目標(biāo)是盡量使生成的圖像與真實(shí)圖像差異增大,以迷惑判別器C.判別器的能力越強(qiáng),生成器生成的圖像質(zhì)量就越差D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域,如音頻生成5、人工智能在工業(yè)生產(chǎn)中的質(zhì)量檢測(cè)環(huán)節(jié)具有應(yīng)用價(jià)值。假設(shè)一個(gè)工廠要利用人工智能檢測(cè)產(chǎn)品缺陷,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.通過(guò)圖像分析和機(jī)器學(xué)習(xí)算法,自動(dòng)識(shí)別產(chǎn)品表面的缺陷B.可以對(duì)大量的檢測(cè)數(shù)據(jù)進(jìn)行學(xué)習(xí),不斷提高缺陷檢測(cè)的準(zhǔn)確率C.人工智能檢測(cè)系統(tǒng)能夠完全取代人工檢測(cè),不需要人工復(fù)檢D.結(jié)合深度學(xué)習(xí)模型和傳統(tǒng)圖像處理技術(shù),提高檢測(cè)的可靠性6、在自然語(yǔ)言處理中,機(jī)器翻譯是一個(gè)重要的應(yīng)用。假設(shè)正在開發(fā)一種新的機(jī)器翻譯模型,以下關(guān)于機(jī)器翻譯技術(shù)的描述,正確的是:()A.基于規(guī)則的機(jī)器翻譯方法總是能夠生成最準(zhǔn)確和自然的翻譯結(jié)果B.神經(jīng)網(wǎng)絡(luò)機(jī)器翻譯模型不需要大量的平行語(yǔ)料進(jìn)行訓(xùn)練就能達(dá)到很好的效果C.結(jié)合統(tǒng)計(jì)方法和神經(jīng)網(wǎng)絡(luò)的機(jī)器翻譯模型能夠更好地處理復(fù)雜的語(yǔ)言結(jié)構(gòu)和語(yǔ)義D.機(jī)器翻譯的質(zhì)量只取決于所使用的算法,與語(yǔ)言的文化背景和語(yǔ)境無(wú)關(guān)7、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。以下關(guān)于聯(lián)邦學(xué)習(xí)的說(shuō)法,不正確的是()A.聯(lián)邦學(xué)習(xí)可以在保護(hù)數(shù)據(jù)隱私的前提下,實(shí)現(xiàn)多個(gè)參與方之間的模型訓(xùn)練和共享B.解決了數(shù)據(jù)在不同機(jī)構(gòu)之間難以流通和共享的問(wèn)題C.聯(lián)邦學(xué)習(xí)的通信開銷較大,限制了其在大規(guī)模數(shù)據(jù)上的應(yīng)用D.聯(lián)邦學(xué)習(xí)技術(shù)已經(jīng)非常成熟,不存在任何技術(shù)挑戰(zhàn)和安全風(fēng)險(xiǎn)8、人工智能中的情感計(jì)算旨在讓計(jì)算機(jī)理解和處理人類的情感。假設(shè)我們要開發(fā)一個(gè)能夠根據(jù)用戶的語(yǔ)音和文本判斷其情感狀態(tài)的系統(tǒng),以下關(guān)于情感計(jì)算的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)分析語(yǔ)音的語(yǔ)調(diào)、語(yǔ)速等特征來(lái)判斷情感B.文本情感分析通常依賴于情感詞典和機(jī)器學(xué)習(xí)算法C.情感計(jì)算的準(zhǔn)確性完全取決于數(shù)據(jù)的質(zhì)量和規(guī)模D.多模態(tài)情感分析結(jié)合了語(yǔ)音、文本、面部表情等多種信息源9、人工智能中的語(yǔ)音識(shí)別技術(shù)能夠?qū)⑷祟惖恼Z(yǔ)音轉(zhuǎn)換為文字。以下關(guān)于語(yǔ)音識(shí)別的敘述,不準(zhǔn)確的是()A.語(yǔ)音識(shí)別系統(tǒng)通常包括聲學(xué)模型、語(yǔ)言模型和解碼器等部分B.語(yǔ)音識(shí)別的準(zhǔn)確率受到語(yǔ)音質(zhì)量、口音和背景噪聲等因素的影響C.語(yǔ)音識(shí)別技術(shù)已經(jīng)非常完美,能夠準(zhǔn)確識(shí)別各種口音和語(yǔ)速的語(yǔ)音D.深度學(xué)習(xí)的應(yīng)用顯著提高了語(yǔ)音識(shí)別的性能和準(zhǔn)確率10、人工智能中的智能搜索算法常用于解決復(fù)雜的優(yōu)化問(wèn)題。假設(shè)我們要在一個(gè)大規(guī)模的狀態(tài)空間中尋找最優(yōu)解,例如在物流配送中規(guī)劃最優(yōu)的路線。以下哪種智能搜索算法在處理這類問(wèn)題時(shí)可能具有優(yōu)勢(shì)?()A.深度優(yōu)先搜索B.廣度優(yōu)先搜索C.模擬退火算法D.回溯算法11、在人工智能的醫(yī)療應(yīng)用中,疾病診斷是一個(gè)重要的方向。假設(shè)我們要利用人工智能技術(shù)輔助醫(yī)生診斷心臟病,需要對(duì)大量的醫(yī)療數(shù)據(jù)進(jìn)行分析。那么,以下關(guān)于人工智能在醫(yī)療診斷中的作用,哪一項(xiàng)是不準(zhǔn)確的?()A.能夠發(fā)現(xiàn)醫(yī)生難以察覺(jué)的細(xì)微模式和關(guān)聯(lián)B.可以完全取代醫(yī)生的診斷,獨(dú)立做出準(zhǔn)確的判斷C.有助于提高診斷的效率和準(zhǔn)確性D.需要結(jié)合醫(yī)生的臨床經(jīng)驗(yàn)和專業(yè)知識(shí)進(jìn)行綜合判斷12、在人工智能的機(jī)器人控制領(lǐng)域,強(qiáng)化學(xué)習(xí)可以讓機(jī)器人通過(guò)與環(huán)境的交互不斷優(yōu)化自己的行為。假設(shè)一個(gè)機(jī)器人需要學(xué)會(huì)在不同地形上行走,以下哪個(gè)因素對(duì)于強(qiáng)化學(xué)習(xí)的效果影響最大?()A.環(huán)境的復(fù)雜度B.機(jī)器人的初始狀態(tài)C.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)D.機(jī)器人的硬件性能13、人工智能在圖像識(shí)別領(lǐng)域取得了顯著的成果。假設(shè)要開發(fā)一個(gè)能夠識(shí)別水果種類的圖像識(shí)別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最關(guān)鍵的?()A.對(duì)圖像進(jìn)行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對(duì)圖像進(jìn)行增強(qiáng)和去噪處理,提高圖像質(zhì)量D.隨機(jī)打亂圖像的順序,增加數(shù)據(jù)的多樣性14、在人工智能的智能推薦系統(tǒng)中,假設(shè)要為用戶提供個(gè)性化的推薦服務(wù),以下關(guān)于推薦算法的描述,正確的是:()A.協(xié)同過(guò)濾算法只考慮用戶的歷史行為,不考慮物品的特征B.基于內(nèi)容的推薦算法能夠根據(jù)物品的屬性為用戶推薦相似的物品C.混合推薦算法結(jié)合了多種推薦方法的優(yōu)點(diǎn),能夠提供更準(zhǔn)確的推薦D.以上推薦算法都存在一定的局限性,無(wú)法滿足所有用戶的需求15、人工智能中的計(jì)算機(jī)視覺(jué)技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。假設(shè)要開發(fā)一個(gè)能夠?qū)崟r(shí)監(jiān)測(cè)交通流量和識(shí)別車輛類型的系統(tǒng),需要在不同的天氣和光照條件下準(zhǔn)確地檢測(cè)和分類車輛。以下哪種計(jì)算機(jī)視覺(jué)技術(shù)或方法在這種復(fù)雜場(chǎng)景下具有更好的魯棒性和準(zhǔn)確性?()A.傳統(tǒng)的圖像處理方法B.基于特征提取的方法C.深度學(xué)習(xí)中的目標(biāo)檢測(cè)算法D.光流法16、人工智能在醫(yī)療領(lǐng)域的應(yīng)用具有巨大的潛力,但也面臨著數(shù)據(jù)隱私和安全性的挑戰(zhàn)。假設(shè)一個(gè)醫(yī)療機(jī)構(gòu)要使用人工智能技術(shù)分析患者的醫(yī)療數(shù)據(jù)來(lái)輔助診斷疾病,同時(shí)要確保患者數(shù)據(jù)不被泄露和濫用。以下哪種技術(shù)或方法在保障數(shù)據(jù)安全和隱私方面最為有效?()A.數(shù)據(jù)加密B.數(shù)據(jù)脫敏C.建立嚴(yán)格的訪問(wèn)控制機(jī)制D.以上方法綜合運(yùn)用17、人工智能在法律領(lǐng)域的輔助決策中具有一定作用。假設(shè)要利用人工智能協(xié)助法官判斷案件,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.分析大量的法律案例和條文,提供相關(guān)的參考和建議B.利用數(shù)據(jù)挖掘技術(shù)發(fā)現(xiàn)案件中的潛在規(guī)律和模式C.人工智能的判斷結(jié)果可以直接作為最終的法律裁決,無(wú)需法官審查D.幫助法官提高決策的效率和準(zhǔn)確性,但最終決策權(quán)仍在法官手中18、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像生成、數(shù)據(jù)增強(qiáng)等方面表現(xiàn)出色。假設(shè)我們想要生成逼真的人臉圖像,使用GAN來(lái)實(shí)現(xiàn)。那么,以下關(guān)于GAN的描述,哪一項(xiàng)是錯(cuò)誤的?()A.由生成器和判別器兩個(gè)部分組成,它們通過(guò)相互對(duì)抗來(lái)學(xué)習(xí)B.生成器的目標(biāo)是生成盡可能逼真的假樣本,以欺騙判別器C.判別器的能力越強(qiáng),生成器就越難學(xué)習(xí)到有效的特征D.GAN的訓(xùn)練過(guò)程是穩(wěn)定的,不會(huì)出現(xiàn)模式崩潰等問(wèn)題19、自動(dòng)駕駛是人工智能的一個(gè)具有挑戰(zhàn)性的應(yīng)用領(lǐng)域。以下關(guān)于自動(dòng)駕駛的描述,不正確的是()A.自動(dòng)駕駛分為不同的級(jí)別,從輔助駕駛到完全自動(dòng)駕駛B.自動(dòng)駕駛需要依靠傳感器、計(jì)算機(jī)視覺(jué)和決策算法等技術(shù)的協(xié)同工作C.目前的自動(dòng)駕駛技術(shù)已經(jīng)非常成熟,可以在任何路況下安全可靠地運(yùn)行D.自動(dòng)駕駛面臨著法律、道德和技術(shù)等多方面的挑戰(zhàn)和問(wèn)題20、自然語(yǔ)言處理是人工智能的重要應(yīng)用領(lǐng)域之一。假設(shè)我們要開發(fā)一個(gè)能夠自動(dòng)回答用戶問(wèn)題的智能客服系統(tǒng),需要對(duì)大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和理解。在這個(gè)過(guò)程中,詞向量模型如Word2Vec和GloVe起到了關(guān)鍵作用。那么,關(guān)于詞向量模型,以下說(shuō)法哪一項(xiàng)是不準(zhǔn)確的?()A.能夠?qū)卧~表示為低維的實(shí)數(shù)向量,捕捉單詞之間的語(yǔ)義關(guān)系B.可以通過(guò)對(duì)大規(guī)模語(yǔ)料庫(kù)的無(wú)監(jiān)督學(xué)習(xí)得到C.不同的詞向量模型在處理多義詞時(shí)效果都很好D.詞向量的計(jì)算可以基于單詞的上下文信息21、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像生成和數(shù)據(jù)增強(qiáng)等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的人臉圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN的訓(xùn)練過(guò)程非常穩(wěn)定,不會(huì)出現(xiàn)模式崩潰等問(wèn)題B.生成器和判別器的能力不需要平衡,只要其中一個(gè)強(qiáng)大就能生成好的圖像C.GAN可以通過(guò)不斷的對(duì)抗訓(xùn)練,學(xué)習(xí)到真實(shí)數(shù)據(jù)的分布,從而生成逼真的新樣本D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域的數(shù)據(jù)生成22、機(jī)器學(xué)習(xí)是人工智能的重要分支,其中監(jiān)督學(xué)習(xí)是一種常見的學(xué)習(xí)方式。以下關(guān)于監(jiān)督學(xué)習(xí)的描述,不正確的是()A.監(jiān)督學(xué)習(xí)需要有標(biāo)記的訓(xùn)練數(shù)據(jù),即輸入數(shù)據(jù)和對(duì)應(yīng)的期望輸出B.常見的監(jiān)督學(xué)習(xí)算法包括決策樹、支持向量機(jī)和神經(jīng)網(wǎng)絡(luò)等C.監(jiān)督學(xué)習(xí)的目標(biāo)是通過(guò)學(xué)習(xí)訓(xùn)練數(shù)據(jù)中的模式和規(guī)律,對(duì)新的未知數(shù)據(jù)進(jìn)行準(zhǔn)確的預(yù)測(cè)或分類D.監(jiān)督學(xué)習(xí)只能處理數(shù)值型數(shù)據(jù),對(duì)于文本、圖像等非數(shù)值型數(shù)據(jù)無(wú)法處理23、在人工智能的研究中,強(qiáng)化學(xué)習(xí)被廣泛應(yīng)用于智能體的決策和優(yōu)化問(wèn)題。假設(shè)一個(gè)智能機(jī)器人需要在復(fù)雜的環(huán)境中學(xué)習(xí)如何行走并避開障礙物,以最快的速度到達(dá)目標(biāo)位置。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法能夠使機(jī)器人更快地學(xué)習(xí)到有效的策略,同時(shí)具有較好的泛化能力?()A.Q-learningB.SARSAC.策略梯度算法D.蒙特卡羅方法24、在人工智能的知識(shí)圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。假設(shè)要為一個(gè)特定領(lǐng)域構(gòu)建知識(shí)圖譜,以下關(guān)于數(shù)據(jù)來(lái)源的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.只選擇權(quán)威的學(xué)術(shù)文獻(xiàn)和研究報(bào)告,確保知識(shí)的準(zhǔn)確性B.廣泛收集互聯(lián)網(wǎng)上的各種信息,包括社交媒體和博客等C.結(jié)合行業(yè)專家的經(jīng)驗(yàn)和知識(shí),以及相關(guān)的數(shù)據(jù)庫(kù)和文檔D.隨機(jī)選擇一些數(shù)據(jù)來(lái)源,不進(jìn)行篩選和評(píng)估25、在人工智能的智能客服中,以下哪個(gè)能力對(duì)于提高用戶滿意度最重要?()A.快速準(zhǔn)確地回答問(wèn)題B.理解用戶的情感和意圖C.提供個(gè)性化的服務(wù)D.主動(dòng)引導(dǎo)用戶進(jìn)行交流26、在人工智能的醫(yī)療影像診斷中,假設(shè)要利用深度學(xué)習(xí)模型輔助醫(yī)生進(jìn)行癌癥檢測(cè),以下關(guān)于這種應(yīng)用的描述,正確的是:()A.深度學(xué)習(xí)模型的診斷結(jié)果總是準(zhǔn)確無(wú)誤的,可以直接作為最終診斷依據(jù)B.醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識(shí)在與模型的結(jié)合中仍然起著關(guān)鍵作用C.訓(xùn)練模型的數(shù)據(jù)越多,模型在醫(yī)療影像診斷中的表現(xiàn)就一定越好D.醫(yī)療影像診斷中的深度學(xué)習(xí)模型不需要經(jīng)過(guò)嚴(yán)格的驗(yàn)證和監(jiān)管27、在人工智能的聚類分析中,例如將客戶按照消費(fèi)行為進(jìn)行分組,假設(shè)數(shù)據(jù)分布不規(guī)則且存在噪聲。以下哪種聚類算法在這種情況下可能表現(xiàn)較好?()A.K-Means聚類算法,基于距離進(jìn)行分組B.層次聚類算法,構(gòu)建層次結(jié)構(gòu)C.密度聚類算法,基于密度進(jìn)行分組D.隨機(jī)聚類算法,隨機(jī)分配數(shù)據(jù)到不同組28、在人工智能的文本生成任務(wù)中,除了生成連貫的文字內(nèi)容,還需要考慮語(yǔ)言的邏輯性和合理性。假設(shè)我們要生成一篇新聞報(bào)道,以下關(guān)于文本生成的說(shuō)法,哪一項(xiàng)是正確的?()A.可以完全依靠隨機(jī)生成來(lái)創(chuàng)造新穎的內(nèi)容B.語(yǔ)言模型的規(guī)模越大,生成的質(zhì)量一定越高C.預(yù)訓(xùn)練語(yǔ)言模型結(jié)合微調(diào)可以提高生成效果D.不需要考慮語(yǔ)法和語(yǔ)義的約束29、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有所涉足,例如音樂(lè)生成和圖像創(chuàng)作。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,不正確的是()A.可以根據(jù)給定的風(fēng)格和主題生成新的音樂(lè)作品和圖像B.人工智能創(chuàng)作的藝術(shù)作品具有獨(dú)特的創(chuàng)新性和表現(xiàn)力C.人工智能在藝術(shù)創(chuàng)作中完全取代了人類藝術(shù)家的創(chuàng)造力和情感表達(dá)D.引發(fā)了關(guān)于藝術(shù)本質(zhì)和創(chuàng)造力的思考和討論30、當(dāng)利用人工智能進(jìn)行推薦系統(tǒng)的設(shè)計(jì),例如為用戶推薦個(gè)性化的電影或音樂(lè),以下哪種技術(shù)可能有助于提高推薦的準(zhǔn)確性和新穎性?()A.協(xié)同過(guò)濾B.基于內(nèi)容的推薦C.混合推薦D.以上都是二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用聚類算法對(duì)交通流量數(shù)據(jù)進(jìn)行分析,找出擁堵路段和高峰期,為交通管理提供決策支持。2、(本題5分)通過(guò)強(qiáng)化學(xué)習(xí)訓(xùn)練一個(gè)智能體在模擬的環(huán)境中進(jìn)行任務(wù)分配和協(xié)作,提高團(tuán)隊(duì)合作的效率和效果。3、(本題5分)借助遺傳算法優(yōu)化一個(gè)機(jī)器人的運(yùn)動(dòng)控制問(wèn)題,使其能夠更加靈活地運(yùn)動(dòng)和執(zhí)行任務(wù)。4、(本題5分)通過(guò)強(qiáng)化學(xué)習(xí)訓(xùn)練一個(gè)智能體在模擬的游戲環(huán)境中進(jìn)行策略優(yōu)化,提高游戲水平。5、(本題5分)利用Python的Scikit-learn庫(kù),實(shí)現(xiàn)邏輯回歸算法對(duì)鳶尾花數(shù)據(jù)集進(jìn)行分類。通過(guò)特征工程和交叉驗(yàn)證來(lái)選擇最優(yōu)的超參數(shù),繪制混淆矩陣評(píng)估模型的性能,并對(duì)分
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖北省襄陽(yáng)市谷城縣石花鎮(zhèn)2025-2026學(xué)年八年級(jí)上學(xué)期期末考試生物試題(無(wú)答案)
- 養(yǎng)老院入住老人醫(yī)療護(hù)理技能培訓(xùn)制度
- 人力資源制度
- 企業(yè)內(nèi)部保密責(zé)任制度
- 老年終末期認(rèn)知下降癥狀群管理方案
- 老年終末期疼痛評(píng)估的全程管理策略
- 科技創(chuàng)新能力培養(yǎng)實(shí)施細(xì)則
- 創(chuàng)新公共服務(wù)提供方式滿足多樣需求
- 2025年商洛市商州富興學(xué)校教師招聘筆試真題
- 地毯整經(jīng)工安全生產(chǎn)意識(shí)知識(shí)考核試卷含答案
- 八年級(jí)地理上冊(cè)《中國(guó)的氣候》探究式教學(xué)設(shè)計(jì)
- 重慶市2026年高一(上)期末聯(lián)合檢測(cè)(康德卷)化學(xué)+答案
- 2026年湖南郴州市百福控股集團(tuán)有限公司招聘9人備考考試題庫(kù)及答案解析
- 綠電直連政策及新能源就近消納項(xiàng)目電價(jià)機(jī)制分析
- 鐵路除草作業(yè)方案范本
- 2026屆江蘇省常州市生物高一第一學(xué)期期末檢測(cè)試題含解析
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)高溫工業(yè)熱泵行業(yè)市場(chǎng)運(yùn)行態(tài)勢(shì)與投資戰(zhàn)略咨詢報(bào)告
- 教培機(jī)構(gòu)排課制度規(guī)范
- 2026年檢視問(wèn)題清單與整改措施(2篇)
- 認(rèn)識(shí)時(shí)間(課件)二年級(jí)下冊(cè)數(shù)學(xué)人教版
- 2026屆陜晉青寧四省高三語(yǔ)文二次聯(lián)考(天一大聯(lián)考)作文題目解析及范文:“避”的抉擇價(jià)值判斷與人生擔(dān)當(dāng)
評(píng)論
0/150
提交評(píng)論