2025年人教版高二數(shù)學(xué)上冊(cè)月考試卷_第1頁(yè)
2025年人教版高二數(shù)學(xué)上冊(cè)月考試卷_第2頁(yè)
2025年人教版高二數(shù)學(xué)上冊(cè)月考試卷_第3頁(yè)
2025年人教版高二數(shù)學(xué)上冊(cè)月考試卷_第4頁(yè)
2025年人教版高二數(shù)學(xué)上冊(cè)月考試卷_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年人教版高二數(shù)學(xué)上冊(cè)月考試卷891考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五總分得分評(píng)卷人得分一、選擇題(共5題,共10分)1、已知函數(shù)且則實(shí)數(shù)的值為()A.B.C.或D.或或2、變量滿足約束條件則目標(biāo)函數(shù)的最小值()A.2B.4C.1D.33、【題文】從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字,構(gòu)成一個(gè)兩位數(shù),則這個(gè)數(shù)字大于40的概率是A.B.C.D.()4、【題文】若關(guān)于x的不等式的解集是M,則對(duì)任意實(shí)數(shù)k,總有()A.2∈M,0MB.2M,0MC.2M,0∈MD.2∈M,0∈M5、數(shù)列{an}為等差數(shù)列,a10=33,a2=1,Sn為數(shù)列{an}的前n項(xiàng)和,則S20-2S10等于()A.40B.200C.400D.20評(píng)卷人得分二、填空題(共6題,共12分)6、為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測(cè)量產(chǎn)品中微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):。編號(hào)12345x169178166175180y7580777081(1)已知甲廠生產(chǎn)的產(chǎn)品共98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;(2)當(dāng)產(chǎn)品中的微量元素x,y滿足≥175且y≥75,該產(chǎn)品為優(yōu)等品,用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量;(3)從乙廠抽出的上述5件產(chǎn)品中,隨即抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)X的分布列及其均值(即數(shù)學(xué)期望).7、【題文】5000輛汽車(chē)經(jīng)過(guò)某一雷達(dá)測(cè)速區(qū),其速度頻率分布直方圖如右圖所示,則時(shí)速超過(guò)70km/h的汽車(chē)數(shù)量為_(kāi)___8、如圖,直線l是曲線y=f(x)在x=3處的切線,f'(x)表示函數(shù)f(x)的導(dǎo)函數(shù),則f(3)+f'(3)的值為_(kāi)_____.9、某校高中生共有900人,其中高一年級(jí)300人,高二年級(jí)200人,高三年級(jí)400人,現(xiàn)采用分層抽樣的方法抽取容量為45的樣本,那么高三年級(jí)應(yīng)抽取的人數(shù)為_(kāi)_____.10、已知A,B,C,D在同一個(gè)球面上,AB⊥平面BCD,BC⊥CD,若AB=6,AD=8,則B,C兩點(diǎn)間的球面距離是______.

11、已知四面體四個(gè)頂點(diǎn)分別為A(2,3,1)B(4,1,鈭?2)C(6,3,7)

和D(鈭?5,鈭?4,8)

則頂點(diǎn)D

到平面ABC

的距離為_(kāi)_____.評(píng)卷人得分三、作圖題(共7題,共14分)12、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?

13、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。ㄈ鐖D所示)14、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最小.(如圖所示)15、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?

16、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最小.(如圖所示)17、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最?。ㄈ鐖D所示)18、分別畫(huà)一個(gè)三棱錐和一個(gè)四棱臺(tái).評(píng)卷人得分四、計(jì)算題(共1題,共10分)19、1.(本小題滿分12分)已知函數(shù)在處取得極值.(1)求實(shí)數(shù)a的值;(2)若關(guān)于x的方程在[,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;(3)證明:(參考數(shù)據(jù):ln2≈0.6931).評(píng)卷人得分五、綜合題(共4題,共12分)20、如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)AB,C三點(diǎn)的拋物的對(duì)稱(chēng)軸為直線l,D為對(duì)稱(chēng)軸l上一動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);

(3)以點(diǎn)A為圓心;以AD為半徑作⊙A.

①證明:當(dāng)AD+CD最小時(shí);直線BD與⊙A相切;

②寫(xiě)出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):____.21、(2009?新洲區(qū)校級(jí)模擬)如圖,已知直角坐標(biāo)系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點(diǎn)A和點(diǎn)B,且OA=OB=1.這條曲線是函數(shù)y=的圖象在第一象限的一個(gè)分支,點(diǎn)P是這條曲線上任意一點(diǎn),它的坐標(biāo)是(a、b),由點(diǎn)P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點(diǎn)E、F.則AF?BE=____.22、已知Sn為等差數(shù)列{an}的前n項(xiàng)和,S6=51,a5=13.23、已知f(x)=logax(a>0,a≠1),設(shè)數(shù)列f(a1),f(a2),f(a3),,f(an)是首項(xiàng)為4,公差為2的等差數(shù)列.參考答案一、選擇題(共5題,共10分)1、C【分析】【解析】試題分析:當(dāng)時(shí),有∴當(dāng)時(shí),有∴綜上實(shí)數(shù)的值為或故選C考點(diǎn):本題考查了方程的求法【解析】【答案】C2、D【分析】【解析】

因?yàn)樽兞繚M足約束條件則目標(biāo)函數(shù)過(guò)點(diǎn)(1,1)取得的最小值3,選D【解析】【答案】D3、A【分析】【解析】本題是一個(gè)古典概型;試驗(yàn)發(fā)生包含的事件是從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),滿足條件的事件可以列舉出有8個(gè),根據(jù)概率公式得到結(jié)果.

解:由題意知本題是一個(gè)古典概型;

試驗(yàn)發(fā)生包含的事件是從數(shù)字1;2,3,4,5中任取兩個(gè)不同的數(shù)字。

構(gòu)成一個(gè)兩位數(shù),共有A52=20種結(jié)果;

滿足條件的事件可以列舉出有;41,41,43,45,54,53,52,51共有8個(gè);

根據(jù)古典概型概率公式得到P=8/20=2/5;

故選A.【解析】【答案】A4、D【分析】【解析】當(dāng)x=0時(shí),原不等式為+4≥0顯然成立,當(dāng)x=2時(shí),原不等式為+4≥2+2,即-2+2≥0,即(k2-1)2+1≥0,也成立,故選(D)?!窘馕觥俊敬鸢浮緿5、C【分析】解:∵a10=33,a2=1;

∴a10=a2+8d;

即d=

則首項(xiàng)a1=1-4=-3;

則S20-2S10=20×(-3)+-2[10×(-3)+]

=-60+760-2(-30+180)

=700-300=400.

故選:C

根據(jù)前n項(xiàng)和公式求出首項(xiàng)和公差即可得到結(jié)論.

本題主要考查等差數(shù)列前n項(xiàng)和公式的應(yīng)用,根據(jù)條件求出首項(xiàng)和公差是解決本題的關(guān)鍵.【解析】【答案】C二、填空題(共6題,共12分)6、略

【分析】【解析】

(1)=7,5×7=35,即乙廠生產(chǎn)的產(chǎn)品數(shù)量為35件.(2)易見(jiàn)只有編號(hào)為2,5的產(chǎn)品為優(yōu)等品,所以乙廠生產(chǎn)的產(chǎn)品中的優(yōu)等品,故乙廠生產(chǎn)有大約35×=14(件)優(yōu)等品,(3)X的取值為0,1,2.P(X=0)==P(X=1)==P(X=2)==所以X的分布列為。X012P故X的均值為E(X)=0×+1×+2×=【解析】【答案】(1)35件(2)14(件)優(yōu)等品(3)X的分布列為。X012P7、略

【分析】【解析】解:由時(shí)速的頻率分布直方圖可知;時(shí)速超過(guò)70km/h的汽車(chē)的頻率為圖中70到80的矩形的面積,∴時(shí)速超過(guò)70km/h的汽車(chē)的頻率為0.010×(80-70)=0.1

∵共有5000輛汽車(chē),∴時(shí)速超過(guò)70km/h的汽車(chē)數(shù)量為5000×0.1=500【解析】【答案】5008、略

【分析】解:由題意,f'(3)==-f(3)=3;

所以f(3)+f′(3)=-+3=

故答案為:.

根據(jù)導(dǎo)數(shù)的幾何意義,f'(3)是曲線在(3,3)處的切線斜率為:f'(3)==-又f(3)=3,可得結(jié)論.

本題考查了導(dǎo)數(shù)的幾何意義.屬于基礎(chǔ)題.【解析】9、略

【分析】解:根據(jù)題意得,用分層抽樣在各層中的抽樣比為=

則在高三年級(jí)抽取的人數(shù)是400×=20人;

故答案為:20.

根據(jù)分層抽樣的定義求出在各層中的抽樣比;即樣本容量比上總體容量,按此比例求出在高三年級(jí)中抽取的人數(shù).

本題的考點(diǎn)是分層抽樣方法,根據(jù)樣本結(jié)構(gòu)和總體結(jié)構(gòu)保持一致,求出抽樣比,再求出在各層中抽取的個(gè)體數(shù)目.【解析】2010、略

【分析】解:如圖,易得

∴則此球內(nèi)接長(zhǎng)方體三條棱長(zhǎng)為AB;BC、CD(CD的對(duì)邊與CD等長(zhǎng));

從而球外接圓的直徑為R=4

則BC與球心構(gòu)成的大圓如圖;因?yàn)椤鱋BC為正三角形;

則B,C兩點(diǎn)間的球面距離是.

故答案為:.

先求BC的距離;求出∠BOC的值,然后求出B,C兩點(diǎn)間的球面距離.

本題考查球的內(nèi)接體問(wèn)題,考查空間想象能力,是基礎(chǔ)題.【解析】11、略

【分析】解:因?yàn)樗拿骟w四個(gè)頂點(diǎn)分別為A(2,3,1)B(4,1,鈭?2)C(6,3,7)

和D(鈭?5,鈭?4,8)

所以AB鈫?=(2,鈭?2,鈭?3)AC鈫?=(4,0,6)AD鈫?=(鈭?7,鈭?7,7)

設(shè)平面ABC

的法向量為n鈫?=(a,b,c)

所以{4a+6c=02a鈭?2b鈭?3c=0

不妨令a=3

則c=鈭?2

解得b=6

平面ABC

的法向量為n鈫?=(3,6,鈭?2)

所以頂點(diǎn)D

到平面ABC

的距離,就是AD鈫?

在平面ABC

的法向量投影的長(zhǎng)度,即:|n鈫?鈰?AD鈫?|n鈫?||=|鈭?21鈭?42鈭?14|32+62+22=11

故答案為:11

求出AB鈫?AC鈫?

然后求出平面ABC

的一個(gè)法向量,通過(guò)法向量與AD鈫?

的數(shù)量積即可求出頂點(diǎn)D

到平面ABC

的距離.

本題考查空間向量的數(shù)量積的應(yīng)用,平面法向量的求法,考查空間想象能力以及計(jì)算能力.【解析】11

三、作圖題(共7題,共14分)12、略

【分析】【分析】根據(jù)軸對(duì)稱(chēng)的性質(zhì)作出B點(diǎn)與河面的對(duì)稱(chēng)點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱(chēng)點(diǎn)B′;連接AB′,可得到馬喝水的地方C;

如圖所示;

由對(duì)稱(chēng)的性質(zhì)可知AB′=AC+BC;

根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.

13、略

【分析】【分析】作出A關(guān)于OM的對(duì)稱(chēng)點(diǎn)A',關(guān)于ON的A對(duì)稱(chēng)點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱(chēng)點(diǎn)A';關(guān)于ON的A對(duì)稱(chēng)點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.

證明:∵A與A'關(guān)于OM對(duì)稱(chēng);A與A″關(guān)于ON對(duì)稱(chēng);

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.14、略

【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;

這樣PA+PB最?。?/p>

理由是兩點(diǎn)之間,線段最短.15、略

【分析】【分析】根據(jù)軸對(duì)稱(chēng)的性質(zhì)作出B點(diǎn)與河面的對(duì)稱(chēng)點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱(chēng)點(diǎn)B′;連接AB′,可得到馬喝水的地方C;

如圖所示;

由對(duì)稱(chēng)的性質(zhì)可知AB′=AC+BC;

根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.

16、略

【分析】【分析】作出A關(guān)于OM的對(duì)稱(chēng)點(diǎn)A',關(guān)于ON的A對(duì)稱(chēng)點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱(chēng)點(diǎn)A';關(guān)于ON的A對(duì)稱(chēng)點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.

證明:∵A與A'關(guān)于OM對(duì)稱(chēng);A與A″關(guān)于ON對(duì)稱(chēng);

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.17、略

【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;

這樣PA+PB最??;

理由是兩點(diǎn)之間,線段最短.18、解:畫(huà)三棱錐可分三步完成。

第一步:畫(huà)底面﹣﹣畫(huà)一個(gè)三角形;

第二步:確定頂點(diǎn)﹣﹣在底面外任一點(diǎn);

第三步:畫(huà)側(cè)棱﹣﹣連接頂點(diǎn)與底面三角形各頂點(diǎn).

畫(huà)四棱可分三步完成。

第一步:畫(huà)一個(gè)四棱錐;

第二步:在四棱錐一條側(cè)棱上取一點(diǎn);從這點(diǎn)開(kāi)始,順次在各個(gè)面內(nèi)畫(huà)與底面對(duì)應(yīng)線段平行的線段;

第三步:將多余線段擦去.

【分析】【分析】畫(huà)三棱錐和畫(huà)四棱臺(tái)都是需要先畫(huà)底面,再確定平面外一點(diǎn)連接這點(diǎn)與底面上的頂點(diǎn),得到錐體,在畫(huà)四棱臺(tái)時(shí),在四棱錐一條側(cè)棱上取一點(diǎn),從這點(diǎn)開(kāi)始,順次在各個(gè)面內(nèi)畫(huà)與底面對(duì)應(yīng)線段平行的線段,將多余線段擦去,得到圖形.四、計(jì)算題(共1題,共10分)19、略

【分析】【解析】

(1)f'(x)=1+,由題意,得f'(1)=0Ta=02分(2)由(1)知f(x)=x-lnx∴f(x)+2x=x2+bóx-lnx+2x=x2+bóx2-3x+lnx+b=0設(shè)g(x)=x2-3x+lnx+b(x>0)則g'(x)=2x-3+=4分當(dāng)x變化時(shí),g'(x),g(x)的變化情況如下表。x(0,)(,1)1(1,2)2g'(x)+0-0+G(x)↗極大值↘極小值↗b-2+ln2當(dāng)x=1時(shí),g(x)最小值=g(1)=b-2,g()=b--ln2,g(2)=b-2+ln2∵方程f(x)+2x=x2+b在[,2]上恰有兩個(gè)不相等的實(shí)數(shù)根高考+資-源-網(wǎng)由TT+ln2≤b≤28分(3)∵k-f(k)=lnk∴nk=2ó(n∈N,n≥2)設(shè)Φ(x)=lnx-(x2-1)則Φ'(x)=-=當(dāng)x≥2時(shí),Φ'(x)<0T函數(shù)Φ(x)在[2,+∞)上是減函數(shù),∴Φ(x)≤Φ(2)=ln2-<0Tlnx<(x2-1)∴當(dāng)x≥2時(shí),∴>2[(1-)+(-)+(-)+(-)+()]=2(1+-)=.∴原不等式成立.12分'【解析】【答案】(1)a=0(2)+ln2≤b≤2(3)原不等式成立.五、綜合題(共4題,共12分)20、略

【分析】【分析】(1)由待定系數(shù)法可求得拋物線的解析式.

(2)連接BC;交直線l于點(diǎn)D,根據(jù)拋物線對(duì)稱(chēng)軸的性質(zhì),點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱(chēng),∴AD=BD.

∴AD+CD=BD+CD;由“兩點(diǎn)之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點(diǎn);

設(shè)出直線BC的解析式為y=kx+b;可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點(diǎn)D的坐標(biāo).

(3)由(2)可知,當(dāng)AD+CD最短時(shí),D在直線BC上,由于已知A,B,C,D四點(diǎn)坐標(biāo),根據(jù)線段之間的長(zhǎng)度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長(zhǎng)定理知,另一點(diǎn)D與現(xiàn)在的點(diǎn)D關(guān)于x軸對(duì)稱(chēng),所以另一點(diǎn)D的坐標(biāo)為(1,-2).【解析】【解答】解:

(1)設(shè)拋物線的解析式為y=a(x+1)(x-3).(1分)

將(0;3)代入上式,得3=a(0+1)(0-3).

解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).

即y=-x2+2x+3.(3分)

(2)連接BC;交直線l于點(diǎn)D.

∵點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱(chēng);

∴AD=BD.(4分)

∴AD+CD=BD+CD=BC.

由“兩點(diǎn)之間;線段最短”的原理可知:

此時(shí)AD+CD最小;點(diǎn)D的位置即為所求.(5分)

設(shè)直線BC的解析式為y=kx+b;

由直線BC過(guò)點(diǎn)(3;0),(0,3);

解這個(gè)方程組,得

∴直線BC的解析式為y=-x+3.(6分)

由(1)知:對(duì)稱(chēng)軸l為;即x=1.

將x=1代入y=-x+3;得y=-1+3=2.

∴點(diǎn)D的坐標(biāo)為(1;2).(7分)

說(shuō)明:用相似三角形或三角函數(shù)求點(diǎn)D的坐標(biāo)也可;答案正確給(2分).

(3)①連接AD.設(shè)直線l與x軸的交點(diǎn)記為點(diǎn)E.

由(2)知:當(dāng)AD+CD最小時(shí);點(diǎn)D的坐標(biāo)為(1,2).

∴DE=AE=BE=2.

∴∠DAB=∠DBA=45度.(8分)

∴∠ADB=90度.

∴AD⊥BD.

∴BD與⊙A相切.(9分)

②∵另一點(diǎn)D與D(1;2)關(guān)于x軸對(duì)稱(chēng);

∴D(1,-2).(11分)21、略

【分析】【分析】根據(jù)OA=OB,得到△AOB是等腰直角三角形,則△NBF也是等腰直角三角形,由于P的縱坐標(biāo)是b,因而F點(diǎn)的縱坐標(biāo)是b,即FM=b,則得到AF=b,同理BE=a,根據(jù)(a,b)是函數(shù)y=的圖象上的點(diǎn),因而b=,ab=,則即可求出AF?BE.【解析】【解答】解:∵P的坐標(biāo)為(a,);且PN⊥OB,PM⊥OA;

∴N的坐標(biāo)為(0,);M點(diǎn)的坐標(biāo)為(a,0);

∴BN=1-;

在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);

∴NF=BN=1-;

∴F點(diǎn)的坐標(biāo)為(1-,);

∵OM=a;

∴AM=1-a;

∴EM=AM=1-a;

∴E點(diǎn)的坐標(biāo)為(a;1-a);

∴AF2=(-)2+()2=,BE2=(a)2+(-a)2=2a2;

∴AF?BE=1.

故答案為:1.22、【解答】(1)設(shè)等差數(shù)列{an}的公差為d;則。

∵S6=51,

∴{#mathml#}12×6

{#/mathml#}×(a1+a6)=51;

∴a1+a6=17;

∴a2+a5=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論