版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PAGE
PAGE
1
Student’sName:
Student’sIDNo.:
CollegeName:
ThestudyofQuaternions
Abstract
Findingthedefinitionofquaternions,operationsofquaternions,andpropertiesofquaternions.Todiscusstheproblemifthesetofquaternionstogetherwiththeoperationsofquaternionsisavectorspaceovertherealnumberfield.Todiscusstheproblemifthesetofquaternionstogetherwiththeoperationsofquaternionsisafield.
Introduction
Searchthedefinitionofquaternions,anddiscusssomepropertiesofthem.Thendiscusstheapplicationsusedbyquaternions.
MainResults
AnswersofQ1
1.1Thedefinitionofquaternion:
Quaternionisthemost
simple
hyper-complex
number.
Thecomplex
iscomposedofa
real
plusthe
elementsofI,
including
i^2=-1.
Similarly,quaternion
iscomposedof
realnumber
plusthree
elementsI,
J,
K,
andthey
havethefollowing
relationship:
i^2=j^2=k^2=ijk=-1,
$foureach
number
isalinearcombinationof
1,
I,
J
andK,
thatisquaternion
itcanbeexpressedasa+bi+cj+dk,
wherea,
B,
C,
Disarealnumber.
1.2Operationsofquaternion
1)Quaternionaddition:p+q
With
complexnumbers,
vectorsandmatrices,
thesumoftwo
quaternion
needto
combinedifferentelements
together.
The
addition
followsthe
commutativeandassociativelaws
ofrealandcomplexnumber.
2)Quaternionmultiplication:pq
Betweentwo
toquaternion
inthenumberof
non-commutative
product
usuallyisGlassman
(Hermann
Grassmann)
iscalledthe
product,
the
product
abovehasbeenbriefly
introduced,
complete
type
it
is:
Becauseof
quaternionmultiplicationcannotbechanged
,
pqisnot
equaltoqp.
Glassmanproduct
used
inthedescriptionof
manyother
algebraicfunction.
Thevector
product
is
partofqp:
3)Quaterniondotproduct:
p·q
Thedotproduct
iscalledthe
Euclidean
innerproduct,
quaternion
dotproductisequivalenttoa
four-dimensionalvector
dotproduct.
Thedotproduct
valueis
thecorrespondingelement
numericalvalue
ofeachelementinthep
and
q
.
Thisisbetweenquaternion
canchangetheproduct
number,
andreturnsa
scalar.
Thedotproduct
canuse
Glassmanproduct
form:
This
product
isusefulfor
theelementsof
isolated
fromquaternion
.
Forexample,
ican
comeout
fromp
extraction:
4)Quaternionouterproduct:Outer(p,q)
TheEuclideanouterproduct
isnot
commonlyused;However,
because
theouterproductand
the
product
formofthe
Glassmaninnerproduct
similarity,
theyarealways
to
bementioned:
5)Quaternionevenproduct:Even(p,q)
Quaternionevenproductisnot
commonlyused,
butit
willbementioned,becauseofitssimilarwithodd
product.
Itisapure
symmetricproduct;therefore,
itiscompletely
interchangeable.
6)Quaternioncrossproduct:p×q
Quaternion
crossproduct
alsoknownas
odd
product.
It
is
equivalenttothecrossproductofvectors
,
and
onlyreturn
onevectorvalue:
7)Quaterniontransposition:
Quaterniontransposition’sdefinitionisby.The
sameway
to
constructcomplex
inversestructure:
Aquaternionitselfdotmultiplicationisascalar.quaterniondividedby
ascalar
isequivalentto
the
scalar
multiplicationonthe
countdown,
buttomakeevery
elementofthequaternion
isdividedby
a
divisor.
8)Quaterniondivision:
Quaternion’sunchangeablepropertyleadtothedifferenceofand.Thismeansthatunlessthe
pisa
scalar,
otherwise
youcannotusetheq/p.
9)QuaternionScalar
Department:Scalar(p)
10)Quaternionvectordepartment:Vector(p)
11)QuaternionModulus:|p|
12)Quaternionsignalnumber:Sgn(p)
13)Quaternionargument:Argu(p)
1.3Propertiesofquaternion
Quaternionis
shapedlikea
numberofai+bj+ck+d,
a,
b,c,disarealnumber.
AnswersofQ2
2.Therearetwoways
to
thematrixrepresentationof
quaternion.
Justascomplexnumberscanbe
\o"Complexnumber"
representedasmatrices
,socanquaternions.Thereareatleasttwowaysofrepresentingquaternionsas
\o"Matrix(mathematics)"
matrices
insuchawaythatquaternionadditionandmultiplicationcorrespondtomatrixadditionand
\o"Matrixmultiplication"
matrixmultiplication
.Oneistouse2?×?2
\o"Complexnumber"
complex
matrices,andtheotheristouse4?×?4
\o"Realnumber"
real
matrices.Ineachcase,therepresentationgivenisoneofafamilyoflinearlyrelatedrepresentations.Intheterminologyof
\o"Abstractalgebra"
abstractalgebra
,theseare
\o"Injectivefunction"
injective
\o"Homomorphism"
homomorphisms
from
H
tothe
\o"Matrixring"
matrixrings
M(2,
C)
and
M(4,
R),respectively.
Using2?×?2complexmatrices,thequaternion
a
+
bi
+
cj
+
dk
canberepresentedas
Thisrepresentationhasthefollowingproperties:
Constraininganytwoof
b,
c
and
d
tozeroproducesarepresentationof
\o"Complexnumber"
complexnumbers
.Forexample,setting
c
=
d
=0
producesadiagonalcomplexmatrixrepresentationofcomplexnumbers,andsetting
b
=
d
=0
producesarealmatrixrepresentation.
Thenormofaquaternion(thesquarerootoftheproductwithitsconjugate,aswithcomplexnumbers)isthesquarerootofthe
\o"Determinant"
determinant
ofthecorrespondingmatrix.
[20]
Theconjugateofaquaternioncorrespondstothe
\o"Conjugatetranspose"
conjugatetranspose
ofthematrix.
Byrestrictionthisrepresentationyieldsa
\o"Groupisomorphism"
isomorphism
betweenthesubgroupofunitquaternionsandtheirimage
\o"SU(2)"
SU(2)
.Topologically,theunitquaternionsarethe
\o"3-sphere"
3-sphere
,sotheunderlyingspaceofSU(2)isalsoa3-sphere.ThegroupSU(2)isimportantfordescribing
\o"Spin(physics)"
spin
in
\o"Quantummechanics"
quantummechanics
;see
\o"Paulimatrices"
Paulimatrices
.
Using4?×?4realmatrices,thatsamequaternioncanbewrittenas
Inthisrepresentation,theconjugateofaquaternioncorrespondstothe
\o"Transpose"
transpose
ofthematrix.Thefourthpowerofthenormofaquaternionisthe
\o"Determinant"
determinant
ofthecorrespondingmatrix.Aswiththe2?×?2complexrepresentationabove,complexnumberscanagainbeproducedbyconstrainingthecoefficientssuitably;forexample,asblockdiagonalmatriceswithtwo2?×?2blocksbysetting
c
=
d
=0.
AnswersofQ3
Becausethevectorpartofaquaternionisavectorin
R3,thegeometryof
R3
isreflectedinthealgebraicstructureofthequaternions.Manyoperationsonvectorscanbedefinedintermsofquaternions,andthismakesitpossibletoapplyquaterniontechniqueswhereverspatialvectorsarise.Forinstance,thisistruein
\o"Electrodynamics"
electrodynamics
and
\o"3Dcomputergraphics"
3Dcomputergraphics
.
Fortheremainderofthissection,
i,
j,and
k
willdenotebothimaginary
[18]
basisvectorsof
H
andabasisfor
R3.Noticethatreplacing
i
by?i,
j
by?j,and
k
by?k
sendsavectortoitsadditiveinverse,sotheadditiveinverseofavectoristhesameasitsconjugateasaquaternion.Forthisreason,conjugationissometimescalledthe
spatialinverse.
Choosetwoimaginaryquaternions
p
=
b1i
+
c1j
+
d1k
and
q
=
b2i
+
c2j
+
d2k.Their
\o"Dotproduct"
dotproduct
is
Thisisequaltothescalarpartsof
pq?,
qp?,
p?q,and
q?p.(Notethatthevectorpartsofthesefourproductsaredifferent.)Italsohastheformulas
The
\o"Crossproduct"
crossproduct
of
p
and
q
relativetotheorientationdeterminedbytheorderedbasis
i,
j,and
k
is
(Recallthattheorientationisnecessarytodeterminethesign.)Thisisequaltothevectorpartoftheproduct
pq
(asquaternions),aswellasthevectorpartof?q?p?.Italsohastheformula
Ingeneral,let
p
and
q
bequaternions(possiblynon-imaginary),andwrite
where
ps
and
qs
arethescalarparts,and
and
arethevectorpartsof
p
and
q.Thenwehavetheformula
Thisshowsthatthenoncommutativityofquaternionmultiplicationcomesfromthemultiplicationofpureimaginaryquaternions.Italsoshowsthattwoquaternionscommuteifandonlyiftheirvectorpartsarecollinear.
Forfurtherelaborationonmodelingthree-dimensionalvectorsusingquaternions,see
\o"Quaternionsandspatialrotation"
quaternionsandspatialrotation
.ApossiblevisualisationwasintroducedbyAndrewJ.Hanson.
AnswersofQ4
1)Applicationofquaternionsinthe
attitudeofarigidbody
simulation
With
symmetricgyroscope
asanexample,
discussestheexisting
applicationandthe
quaternions
inthe
attitudeofarigidbody
simulation
problemin.
Thatattitude
withquaternionsdescription
hasasolution
quickly,
won't
appearsingular
advantages,
but
implied
quaternions
equation
constraint
isdifferentialforms,
whichleadtoa
strictlimitonthe
simulation
timestep,
whichlimitsits
applicationin
acertainextent.
Finally
discussestheimplementationofattitudedescription
uniqueness
problem
withquaternions,
and
putforwardtheconceptof"standard"
quaternions.
2)Applicationofunit
quaternionsin
aerialphoto-grammetry
solution
Researchon
unit
quaternionsmethod
in
aerial
applicationof
aerialtriangulation
ineachstep
of
the
algorithm,
andthe
stabilityandapplicability
isevaluated.
Thefirstdescribesthe
methodofunit
quaternions
tectonicrotation
matrixbasedon
relativeorientation,
establishing
modeland
basedon
thenumberofunits
quaternionssettlement
methodforthe
modelisconstructed
basedonthebeammethod;
regional
networkunit
quaternionsrientationandbundleblockadjustment
test,
and
withthetraditional
Eulerangle
toconstructtherotationmatrix
basedschemesarecompared.
Thetestresultsshowthat,
inthe
relativeorientation
test,
iftake
P-Halgorithm,
whichrequiresonlyminimalcontrolpointsto
ensurethatall
testdata
canobtain
thecorrectsolution.
Whilein
thebundleadjustmentmethod,
methodofunitqu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026國家空間科學中心四子王旗臺站執(zhí)行站長招聘1人備考題庫有答案詳解
- 2026四川成都積微物聯(lián)集團股份有限公司面向中鋁集團內(nèi)部企業(yè)招聘17人備考題庫及完整答案詳解
- 2025江西南昌市勞動保障事務代理中心招聘2人備考題庫完整參考答案詳解
- 2026年上半年云南民族大學附屬中學招聘人員備考題庫(1人)及完整答案詳解1套
- 2026年上半年云南省科學技術(shù)館(云南省科普服務中心)招聘人員備考題庫(5人)有完整答案詳解
- 2026四川宜賓市科技人才集團有限公司招聘10人備考題庫及一套參考答案詳解
- 2026北京海淀區(qū)中國人民大學人口與健康學院招聘1人備考題庫及1套完整答案詳解
- 2026年1月廣東廣州市天河實驗幼兒園招聘編外聘用制專任教師1人備考題庫有答案詳解
- 2026上海證券交易所員工招聘備考題庫及一套參考答案詳解
- 2026八路軍一二九師紀念館公開招聘勞務派遣人員8名備考題庫帶答案詳解
- 制造業(yè)工業(yè)自動化生產(chǎn)線方案
- 《傳播學概論(第四版)》全套教學課件
- (正式版)JB∕T 7052-2024 六氟化硫高壓電氣設(shè)備用橡膠密封件 技術(shù)規(guī)范
- 單位車輛委托處理協(xié)議書
- 2024工傷免責承諾書
- 企業(yè)人才發(fā)展方案
- 《上樞密韓太尉書》教學課件
- 數(shù)字化與碳中和園區(qū)篇
- 八年級歷史上冊期末測試題帶答案
- 花城版音樂七年級下冊53康定情歌教案設(shè)計
- 2023年江蘇省中學生生物奧林匹克競賽試題及答案
評論
0/150
提交評論