版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年外研版三年級(jí)起點(diǎn)高三數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共8題,共16分)1、設(shè)集合A={x|x>-1},B={x|x≥1},則“x∈A且x?B”成立的充要條件是()A.-1<x≤1B.x≤1C.x>-1D.-1<x<12、已知2x+3y+4z=1,則x2+y2+z2的最小值是()A.B.C.D.3、已知向量=(1,2),=(2,-1),下列結(jié)論中不正確的是()A.|+|=|-|B.⊥C.||=||D.∥4、已知變量x,y滿足約束條件,則目標(biāo)函數(shù)z=6x-2y的最小值為()A.32B.4C.8D.25、下列命題中正確的是()A.當(dāng)x>0且x≠1時(shí),B.當(dāng)C.當(dāng)?shù)淖钚≈禐镈.當(dāng)0<x≤2時(shí),無(wú)最大值6、如果a<b<0,那么下面一定成立的是()A.a-b>0B.ac<bcC.D.a2>b27、設(shè)函數(shù)f(x)=ax3+bx2+cx+2的導(dǎo)函數(shù)為f′(x),若f′(x)為奇函數(shù),則有()A.a≠0,c=0B.b=0C.a=0,c≠0D.a2+c2=08、某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣方法,抽取42人做問(wèn)卷調(diào)查,將840人按1,2,,840隨機(jī)編號(hào),則抽取的42人中,編號(hào)落入?yún)^(qū)間[481,720]的人數(shù)為()A.11B.12C.13D.14評(píng)卷人得分二、填空題(共8題,共16分)9、已知函數(shù)f(x)是定義在(-∞,+∞)上的偶函數(shù),且在[0,+∞)上是增函數(shù),若實(shí)數(shù)a滿足:,則a的取值范圍是____.10、已知角α終邊經(jīng)過(guò)點(diǎn)P(a,1+3a),且cosα=-,則a=____.11、函數(shù)y=x+,x∈[2,5]的值域?yàn)開(kāi)___.12、點(diǎn)(a+1,a-1)在圓x2+y2-2ay-4=0的內(nèi)部,則a的取值范圍是____.13、如圖2是一個(gè)算法的程序框圖,回答下面的問(wèn)題;當(dāng)輸入的值為3時(shí),輸出的結(jié)果是____.
14、曲線y=-x3+3x2在x=1處的切線方程為_(kāi)___.15、(幾何證明選講選做題)如圖,圓O是△ABC的外接圓,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2AB=3.則BD的長(zhǎng)為_(kāi)___.16、【題文】點(diǎn)到拋物線的準(zhǔn)線的距離為6,則拋物線的方程是____.評(píng)卷人得分三、判斷題(共6題,共12分)17、判斷集合A是否為集合B的子集;若是打“√”,若不是打“×”.
(1)A={1,3,5},B={1,2,3,4,5,6}.____;
(2)A={1,3,5},B={1,3,6,9}.____;
(3)A={0},B={x|x2+1=0}.____;
(4)A={a,b,c,d},B={d,b,c,a}.____.18、判斷集合A是否為集合B的子集;若是打“√”,若不是打“×”.
(1)A={1,3,5},B={1,2,3,4,5,6}.____;
(2)A={1,3,5},B={1,3,6,9}.____;
(3)A={0},B={x|x2+1=0}.____;
(4)A={a,b,c,d},B={d,b,c,a}.____.19、函數(shù)y=sinx,x∈[0,2π]是奇函數(shù).____(判斷對(duì)錯(cuò))20、空集沒(méi)有子集.____.21、任一集合必有兩個(gè)或兩個(gè)以上子集.____.22、若b=0,則函數(shù)f(x)=(2k+1)x+b在R上必為奇函數(shù)____.評(píng)卷人得分四、解答題(共2題,共20分)23、不等式x2-x-6≤0解集為M,不等式x2+2x-8>0解集為N,不等式x2-3ax+2a2<0(a>0)解集為P.
(Ⅰ)求M∩N;
(Ⅱ)若“M∩N”是“P”的充分條件,求實(shí)數(shù)a的取值范圍.24、【題文】評(píng)卷人得分五、簡(jiǎn)答題(共1題,共2分)25、如圖,在直角梯形ABCD中,AD//BC,當(dāng)E、F分別在線段AD、BC上,且AD=4,CB=6,AE=2,現(xiàn)將梯形ABCD沿EF折疊,使平面ABFE與平面EFCD垂直。1.判斷直線AD與BC是否共面,并證明你的結(jié)論;2.當(dāng)直線AC與平面EFCD所成角為多少時(shí),二面角A—DC—E的大小是60°。評(píng)卷人得分六、證明題(共1題,共9分)26、用分析法和綜合法分別證明下題:
如圖,在△ABC中,AB=AC,BE⊥AC,CF⊥AB,BE與CF相交于M,求證:MB=MC.參考答案一、選擇題(共8題,共16分)1、D【分析】【分析】判斷“x∈A且x?B”成立的充要條件要分別說(shuō)明必要性與充分性.【解析】【解答】解:∵集合A={x|x>-1};B={x|x≥1};
又∵“x∈A且x?B”;
∴-1<x<1;
又由-1<x<1時(shí);
滿足x∈A且x?B.
故選D.2、D【分析】【分析】由條件利用柯西不等式可得(x2+y2+z2)(4+9+16)≥(2x+3y+4z)2=1,由此求得x2+y2+z2的最小值.【解析】【解答】解:∵2x+3y+4z=1,利用柯西不等式可得(x2+y2+z2)(4+9+16)≥(2x+3y+4z)2=1;
故x2+y2+z2≥,當(dāng)且僅當(dāng)時(shí);取等號(hào);
故x2+y2+z2的最小值為;
故選:D.3、D【分析】【分析】求出|+|,|-|,?,||,||,即可判斷ABC三個(gè)選項(xiàng)的正誤,得到結(jié)果.【解析】【解答】解:∵向量=(1,2),=(2;-1);
∴|+|=,|-|=;
∴?=2-2=0;
∴||=,||=;
∴A;B、C正確.
∴D錯(cuò)誤.
故選:D.4、B【分析】【分析】作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【解析】【解答】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=6x-2y得y=3x-;
平移直線y=3x-,由圖象可知當(dāng)直線y=3x-經(jīng)過(guò)點(diǎn)A時(shí);
直線y=3x-的截距最大;此時(shí)z最?。?/p>
由,解得;
即A(1;1);
此時(shí)z=6×1-2×1=4;
故選:B.5、B【分析】【分析】根據(jù)基本不等式a+b≥2的應(yīng)用條件以及“=”成立的條件,判定選項(xiàng)中正確的命題是哪一個(gè)即可.【解析】【解答】解:A中,當(dāng)x=>0時(shí),lg+=-2;命題不成立,A是錯(cuò)誤的;
B中,根據(jù)基本不等式知,+≥2;當(dāng)且僅當(dāng)x=1時(shí)取“=”,∴B正確;
C中,當(dāng)0<θ<時(shí),0<sinθ<1,∴sinθ+取不到最小值2;∴C錯(cuò)誤;
D中,當(dāng)0<x≤2時(shí),是增函數(shù),有最大值2-;∴D錯(cuò)誤;
故選:B.6、D【分析】【分析】利用不等式的性質(zhì)即可得出.【解析】【解答】解:∵a<b<0;
∴-a>-b>0;
∴a2>b2.
故選:D.7、D【分析】【分析】先求導(dǎo)數(shù)f′(x),由f′(x)為奇函數(shù)可知f'(x)=-f'(-x),故3ax2+c恒成立恒成立,所以a=c=0,由此得出答案.【解析】【解答】解:函數(shù)f(x)=ax3+bx2+cx+2的導(dǎo)函數(shù)為f′(x)=3ax2+2bx+c;
∵函數(shù)f′(x)=3ax2+2bx+c是定義在R上的奇函數(shù);
∴f'(x)=-f'(-x),即3ax2+2bx+c=-3ax2+2bx-c;
∴3ax2+c恒成立,a=c=0.即a2+c2=0.
故選D.8、B【分析】【分析】根據(jù)系統(tǒng)抽樣方法,從840人中抽取42人,那么從20人抽取1人.從而得出從編號(hào)481~720共240人中抽取的人數(shù)即可.【解析】【解答】解:使用系統(tǒng)抽樣方法;從840人中抽取42人,即從20人抽取1人.
所以從編號(hào)1~480的人中,恰好抽取=24人,接著從編號(hào)481~720共240人中抽取=12人.
故:B.二、填空題(共8題,共16分)9、略
【分析】【分析】由于函數(shù)f(x)是定義在R上的偶函數(shù),則f(-x)=f(x),即有f(x)=f(|x|),,即為f(|log3a|)≤f(1),再由f(x)在區(qū)間[0,+∞)上單調(diào)遞增,得到|log3a|≤1,即有-1≤log3a≤1,解出即可【解析】【解答】解:由于函數(shù)f(x)是定義在R上的偶函數(shù);
則f(-x)=f(x);即有f(x)=f(|x|);
由實(shí)數(shù)a滿足;
則有f(log3a)+f(-log3a)≤2f(1);
即2f(log3a)≤2f(1)即f(log3a)≤f(1);
即有f(|log3a|)≤f(1);
由于f(x)在區(qū)間[0;+∞)上單調(diào)遞增;
則|log3a|≤1,即有-1≤log3a≤1;
解得,≤a≤3.
故答案為:≤a≤3.10、略
【分析】【分析】由條件利用任意角的三角函數(shù)的定義,求得a的值.【解析】【解答】解:∵角α終邊經(jīng)過(guò)點(diǎn)P(a,1+3a),且cosα=-=,即;
求得a=-,或a=-;
故答案為:-或-.11、略
【分析】【分析】設(shè)t=,運(yùn)用換元法轉(zhuǎn)化為二次函數(shù)求解.【解析】【解答】解:設(shè)t=,函數(shù)y=x+;x∈[2,5]
y=t2+t+1;t∈[1,2]
可判斷為遞增函數(shù);
t=1;時(shí),y=3.
t=2時(shí);y=7.
故答案為:[3,7].12、略
【分析】【分析】直接把點(diǎn)(a+1,a-1)代入圓的方程左邊小于0,解不等式可得a的范圍.【解析】【解答】解:∵點(diǎn)(a+1,a-1)在圓x2+y2-2ay-4=0的內(nèi)部(不包括邊界);
∴(a+1)2+(a-1)2-2a(a-1)-4<0;
整理得:a<1.
故答案為:(-∞,1).13、略
【分析】【分析】題中程序表示分段函數(shù),當(dāng)自變量x小于5時(shí)輸出y=x2-1;而x≥5時(shí)輸出y=2x2+2.由此計(jì)算f(3)的值,即可得到x的值為3時(shí),輸出的結(jié)果【解析】【解答】解:(1)當(dāng)輸入x的值為3時(shí);
由于滿足“x<5”,計(jì)算y=x2-1=8
∴輸出的結(jié)果是8
故答案為:8.14、略
【分析】【分析】根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)y=f(x)在x=1處的導(dǎo)數(shù),即是改點(diǎn)處切線的斜率,從而寫(xiě)出切線的方程.【解析】【解答】解:∵y=f(x)=-x3+3x2,∴y'=f′(x)=-3x2+6x;
∴y'|x=1=(-3x2+6x)|x=1=-3×12+6×1=3;
又x=1時(shí),y=f(1)=-13+3×12=2;
∴曲線y=f(x)=-x3+3x2在x=1處的切線方程為y-2=3(x-1);
即3x-y-1=0;
故答案為:3x-y-1=015、略
【分析】【解析】試題分析:易知:因?yàn)镃D=2AB=3,代入解得BD=4.考點(diǎn):割線的性質(zhì)?!窘馕觥俊敬鸢浮?16、略
【分析】【解析】略【解析】【答案】三、判斷題(共6題,共12分)17、√【分析】【分析】根據(jù)子集的概念,判斷A的所有元素是否為B的元素,是便說(shuō)明A是B的子集,否則A不是B的子集.【解析】【解答】解:(1)1;3,5∈B,∴集合A是集合B的子集;
(2)5∈A;而5?B,∴A不是B的子集;
(3)B=?;∴A不是B的子集;
(4)A;B兩集合的元素相同,A=B,∴A是B的子集.
故答案為:√,×,×,√.18、√【分析】【分析】根據(jù)子集的概念,判斷A的所有元素是否為B的元素,是便說(shuō)明A是B的子集,否則A不是B的子集.【解析】【解答】解:(1)1;3,5∈B,∴集合A是集合B的子集;
(2)5∈A;而5?B,∴A不是B的子集;
(3)B=?;∴A不是B的子集;
(4)A;B兩集合的元素相同,A=B,∴A是B的子集.
故答案為:√,×,×,√.19、×【分析】【分析】根據(jù)奇函數(shù)的定義進(jìn)行判斷即可得到答案.【解析】【解答】解:∵x∈[0;2π],定義域不關(guān)于原點(diǎn)對(duì)稱;
故函數(shù)y=sinx不是奇函數(shù);
故答案為:×20、×【分析】【分析】根據(jù)空集的性質(zhì),分析可得空集是其本身的子集,即可得答案.【解析】【解答】解:根據(jù)題意;空集是任何集合的子集,是任何非空集合的真子集;
即空集是其本身的子集;則原命題錯(cuò)誤;
故答案為:×.21、×【分析】【分析】特殊集合?只有一個(gè)子集,故任一集合必有兩個(gè)或兩個(gè)以上子集錯(cuò)誤.【解析】【解答】解:?表示不含任何元素;?只有本身一個(gè)子集,故錯(cuò)誤.
故答案為:×.22、√【分析】【分析】根據(jù)奇函數(shù)的定義即可作出判斷.【解析】【解答】解:當(dāng)b=0時(shí);f(x)=(2k+1)x;
定義域?yàn)镽關(guān)于原點(diǎn)對(duì)稱;
且f(-x)=-(2k+1)x=-f(x);
所以函數(shù)f(x)為R上的奇函數(shù).
故答案為:√.四、解答題(共2題,共20分)23、略
【分析】【分析】(Ⅰ)根據(jù)不等式的解法求解集合M;N,然后根據(jù)集合的基本運(yùn)算即可求M∩N;
(Ⅱ)求出M∩N和P,根據(jù)“M∩N”是“P”的充分條件,即可求實(shí)數(shù)a的取值范圍.【解析】【解答】解:(Ⅰ)∵x2-x-6≤0;
∴M={x|-2≤x≤3}.
∵x2+2x-8>0;
∴N={x|x>2或x<-4}.
∴實(shí)數(shù)M∩N為{x|2<x≤3}.
(Ⅱ)由x2-3ax+2a2<0(a>0);
得(x-a)(x-2a)<0;
又a>0;
∴P={x|a<x<2a};
又“M∩N”是“P”的充分條件;
∴.
∴實(shí)數(shù)a的取值范圍.24、略
【分析】【解析】解:(Ⅰ)由得
兩式相減得即
∴即(3分)
故數(shù)列{}是從第2項(xiàng)起,以為首項(xiàng);2為公比的等比數(shù)列。
又∴故
又不滿足
∴(6分)
(Ⅱ)證明:由得則。
(7分)
∴+①
從而+②(9分)
①-②得:故(11分)
∴(12分)【解析】【答案】
(Ⅰ)
(Ⅱ)證明略五、簡(jiǎn)答題(共1題,共2分)25、略
【分析】
1.是異面直線,(1分)法一(反證法)假設(shè)共面為..又.這與為梯形矛盾.故假設(shè)不成立.即是異面直線.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司制度標(biāo)準(zhǔn)還是公司標(biāo)準(zhǔn)制度
- 保險(xiǎn)監(jiān)管法規(guī)制度
- 超市肉脯切割師培訓(xùn)課件
- 代理記賬公司內(nèi)部制度
- 超市店員培訓(xùn)
- 2025-2030細(xì)胞治療產(chǎn)業(yè)化瓶頸突破與規(guī)?;a(chǎn)解決方案
- 2025-2030細(xì)胞培養(yǎng)肉產(chǎn)業(yè)化成本下降路徑與消費(fèi)者認(rèn)知調(diào)研
- 2025-2030紙張印刷制造商業(yè)分析與發(fā)展規(guī)劃及投資價(jià)值研究
- 2025-2030紙業(yè)制造行業(yè)市場(chǎng)分析深度研究發(fā)展
- 2025-2030纖維增強(qiáng)復(fù)合材料制造工藝創(chuàng)新及工程應(yīng)用
- 大學(xué)生創(chuàng)業(yè)導(dǎo)論學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- DB23T 3735-2024云杉花墨天牛防治技術(shù)規(guī)程
- 車輛安全操作規(guī)程
- 2024年中考語(yǔ)文復(fù)習(xí)沖刺課內(nèi)古詩(shī)詞閱讀(上海專用)(原卷版+解析版)
- 放射科醫(yī)院感染管理:加強(qiáng)院感控制
- 建筑防水工程技術(shù)規(guī)程DBJ-T 15-19-2020
- 《公路橋涵養(yǎng)護(hù)規(guī)范》(JTG5120-2021)
- 矢量網(wǎng)絡(luò)分析儀校準(zhǔn)規(guī)范
- 高考英語(yǔ)閱讀理解分類及方法課件
- 華為在歐洲市場(chǎng)分析報(bào)告
- 商業(yè)廣場(chǎng)物管費(fèi)測(cè)算表
評(píng)論
0/150
提交評(píng)論