版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁云南醫(yī)藥健康職業(yè)學(xué)院
《智能終端操作系統(tǒng)開發(fā)》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像識別是人工智能的常見應(yīng)用之一。假設(shè)要開發(fā)一個能夠準確識別各種動物的圖像識別系統(tǒng),以下關(guān)于圖像識別技術(shù)的描述,正確的是:()A.僅僅依靠像素級的特征提取就能實現(xiàn)高精度的圖像識別,無需考慮對象的形狀和結(jié)構(gòu)B.深度學(xué)習(xí)模型在圖像識別中總是能夠自動學(xué)習(xí)到最有效的特征,無需人工干預(yù)特征設(shè)計C.對于復(fù)雜的圖像場景,傳統(tǒng)的圖像識別方法比基于深度學(xué)習(xí)的方法更具優(yōu)勢D.圖像識別系統(tǒng)的性能不受圖像質(zhì)量、光照條件和拍攝角度等因素的影響2、人工智能在醫(yī)療影像診斷中的輔助作用越來越受到重視。假設(shè)一個醫(yī)生正在借助人工智能系統(tǒng)輔助診斷X光片,以下關(guān)于醫(yī)療影像診斷中人工智能的描述,正確的是:()A.人工智能系統(tǒng)的診斷結(jié)果可以完全替代醫(yī)生的判斷,醫(yī)生無需再進行分析B.醫(yī)生應(yīng)該將人工智能系統(tǒng)的診斷結(jié)果作為唯一參考,忽略自己的臨床經(jīng)驗C.人工智能系統(tǒng)可以提供輔助信息和提示,幫助醫(yī)生更準確地診斷,但最終決策仍由醫(yī)生做出D.醫(yī)療影像診斷中的人工智能技術(shù)還不夠成熟,不能為醫(yī)生提供任何有價值的幫助3、在人工智能的聯(lián)邦學(xué)習(xí)中,假設(shè)多個參與方需要在保護數(shù)據(jù)隱私的前提下共同訓(xùn)練一個模型。以下哪種技術(shù)或機制能夠確保數(shù)據(jù)的安全性和隱私性?()A.加密技術(shù),對數(shù)據(jù)和模型參數(shù)進行加密傳輸和計算B.數(shù)據(jù)匿名化,去除數(shù)據(jù)中的敏感信息C.建立可信的第三方機構(gòu)進行數(shù)據(jù)管理D.不采取任何措施,直接共享原始數(shù)據(jù)4、在人工智能的算法中,遺傳算法是一種基于自然選擇和遺傳機制的優(yōu)化算法??紤]一個優(yōu)化問題,需要在一個復(fù)雜的搜索空間中找到最優(yōu)解。以下關(guān)于遺傳算法的描述,哪一項是不正確的?()A.遺傳算法通過模擬生物進化過程來尋找最優(yōu)解B.遺傳算法容易陷入局部最優(yōu)解C.遺傳算法對于大規(guī)模的優(yōu)化問題具有較好的性能D.遺傳算法的搜索過程是隨機的,沒有任何規(guī)律可循5、在人工智能的倫理和法律問題中,算法偏見是一個需要關(guān)注的重點。假設(shè)一個招聘用的人工智能系統(tǒng)由于數(shù)據(jù)偏差導(dǎo)致對某些特定群體的不公平篩選。以下哪種方法在發(fā)現(xiàn)和糾正算法偏見方面最為重要?()A.算法審計B.數(shù)據(jù)清洗和預(yù)處理C.引入多樣化的數(shù)據(jù)集D.以上方法綜合運用6、在人工智能的教育應(yīng)用中,個性化學(xué)習(xí)系統(tǒng)可以根據(jù)學(xué)生的學(xué)習(xí)情況提供定制的學(xué)習(xí)內(nèi)容和建議。假設(shè)要開發(fā)一個這樣的系統(tǒng),需要準確評估學(xué)生的知識水平和學(xué)習(xí)能力。以下哪種評估方法和模型在實現(xiàn)個性化學(xué)習(xí)方面最為準確和有效?()A.基于標準化測試的評估B.基于學(xué)習(xí)行為數(shù)據(jù)的動態(tài)評估C.教師的主觀評價D.同學(xué)之間的相互評價7、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對醫(yī)學(xué)影像中的病變區(qū)域進行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進一步的研究和改進8、在人工智能的強化學(xué)習(xí)中,假設(shè)智能體在探索環(huán)境時面臨高風(fēng)險的動作選擇,以下哪種策略能夠平衡探索和利用,以實現(xiàn)更好的學(xué)習(xí)效果?()A.ε-貪心策略,以一定概率隨機選擇動作B.始終選擇最優(yōu)動作,不進行探索C.隨機選擇動作,不考慮之前的經(jīng)驗D.只在初始階段進行探索,之后完全利用9、人工智能中的模型評估指標對于衡量模型性能至關(guān)重要。假設(shè)要評估一個圖像分類模型的性能,以下關(guān)于評估指標的描述,正確的是:()A.準確率是唯一可靠的評估指標,能夠全面反映模型的性能B.召回率和精確率相互獨立,沒有關(guān)聯(lián)C.F1值綜合考慮了召回率和精確率,能夠更全面地評估模型D.混淆矩陣只適用于二分類問題,對于多分類問題沒有作用10、在人工智能的目標檢測任務(wù)中,假設(shè)要在圖像中準確檢測出多個不同類別的物體,以下關(guān)于目標檢測算法的描述,正確的是:()A.基于傳統(tǒng)特征的目標檢測算法在復(fù)雜場景下的性能優(yōu)于深度學(xué)習(xí)算法B.深度學(xué)習(xí)的目標檢測算法,如FasterR-CNN,能夠?qū)崿F(xiàn)高精度的檢測C.目標檢測算法的性能只取決于模型的復(fù)雜度,與訓(xùn)練數(shù)據(jù)無關(guān)D.所有的目標檢測算法都能夠?qū)崟r處理視頻中的目標檢測任務(wù)11、在人工智能的模型評估中,除了準確率和召回率等常見指標,以下哪種指標對于衡量模型的性能也很重要?()A.F1值,綜合考慮準確率和召回率B.均方誤差,用于回歸問題C.混淆矩陣,詳細展示分類結(jié)果D.以上都是12、人工智能中的自動機器學(xué)習(xí)(AutoML)旨在自動化模型的選擇和調(diào)優(yōu)過程。假設(shè)一個企業(yè)沒有專業(yè)的數(shù)據(jù)科學(xué)家,希望使用AutoML來構(gòu)建模型。以下關(guān)于自動機器學(xué)習(xí)的描述,哪一項是錯誤的?()A.AutoML可以自動搜索合適的算法、超參數(shù)和特征工程方法B.能夠降低模型開發(fā)的門檻,使非專業(yè)人員也能構(gòu)建有效的人工智能模型C.AutoML生成的模型總是優(yōu)于由經(jīng)驗豐富的數(shù)據(jù)科學(xué)家手動構(gòu)建的模型D.但仍需要一定的人工干預(yù)和監(jiān)督,以確保模型的合理性和可靠性13、假設(shè)在一個智能教育系統(tǒng)中,需要利用人工智能為學(xué)生提供個性化的學(xué)習(xí)路徑和資源推薦。為了準確評估學(xué)生的學(xué)習(xí)狀態(tài)和需求,以下哪種數(shù)據(jù)和方法可能是重要的?()A.學(xué)習(xí)行為數(shù)據(jù)和聚類分析B.知識掌握程度數(shù)據(jù)和回歸分析C.學(xué)習(xí)偏好數(shù)據(jù)和分類算法D.以上都是14、圖像識別是人工智能的一個重要應(yīng)用領(lǐng)域。假設(shè)一個安防系統(tǒng)需要通過攝像頭實時識別出特定的人物或物體。以下關(guān)于圖像識別技術(shù)的描述,哪一項是錯誤的?()A.深度學(xué)習(xí)算法在圖像識別中表現(xiàn)出色,能夠自動學(xué)習(xí)圖像的特征B.圖像識別系統(tǒng)需要大量的標注數(shù)據(jù)進行訓(xùn)練,以提高識別準確率C.圖像的光照、角度和背景變化等因素會對識別結(jié)果產(chǎn)生較大影響D.一旦圖像識別模型訓(xùn)練完成,就無需再進行更新和改進,可以一直準確識別各種新的圖像15、人工智能中的知識圖譜用于表示實體之間的關(guān)系和知識。假設(shè)一個知識圖譜被用于智能問答系統(tǒng),以下關(guān)于知識圖譜的描述,正確的是:()A.知識圖譜中的知識是固定不變的,不能進行更新和擴展B.知識圖譜能夠自動從大量文本中抽取知識,無需人工干預(yù)C.可以通過知識圖譜的推理功能發(fā)現(xiàn)隱藏的知識和關(guān)系D.知識圖譜只適用于特定領(lǐng)域的知識表示,通用性較差二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述人工智能中的知識表示方法。2、(本題5分)談?wù)勎谋痉诸惖某R娝惴ê湍P汀?、(本題5分)解釋深度神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和工作原理。4、(本題5分)說明人工智能在采購決策和成本控制中的應(yīng)用。三、操作題(本大題共5個小題,共25分)1、(本題5分)運用深度學(xué)習(xí)框架構(gòu)建一個自然語言對話系統(tǒng),實現(xiàn)與用戶的自然對話,提高交互體驗。2、(本題5分)通過強化學(xué)習(xí)訓(xùn)練一個智能體在模擬的游戲環(huán)境中與其他玩家進行對戰(zhàn),提升對戰(zhàn)策略。3、(本題5分)使用Python中的TensorFlow框架,構(gòu)建一個基于自監(jiān)督圖學(xué)習(xí)(Self-SupervisedGraphLearning)的模型,對圖結(jié)構(gòu)數(shù)據(jù)進行特征學(xué)習(xí)和分析。4、(本題5分)使用Python中的PyTorch框架,構(gòu)建一個基于多頭自注意力機制的文本分類模型,處理長文本數(shù)據(jù)。5、(本題5分)利用Scikit-learn中的K近鄰算法,對文本數(shù)據(jù)進行分類,如新聞分類、郵件分類等。提取文本的特征向量,分析不同距離度量和K值對分類結(jié)果的影響,選擇最優(yōu)的參數(shù)組合提高分類準確率。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)分析一個基于人工智能的圖像生成模型,如
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 律師合同轉(zhuǎn)讓協(xié)議
- 開拓項目協(xié)議書
- 開發(fā)商協(xié)議合同
- 就業(yè)協(xié)議押金合同
- 屋面換瓦合同范本
- 小棚轉(zhuǎn)讓協(xié)議書
- 小區(qū)打孔協(xié)議書
- 戲曲創(chuàng)作協(xié)議書
- 音響設(shè)備合同范本
- 藥品售后協(xié)議書
- 合同書包養(yǎng)模板
- 對外漢語教學(xué)法智慧樹知到期末考試答案章節(jié)答案2024年西北師范大學(xué)
- 拳擊冬訓(xùn)訓(xùn)練計劃方案設(shè)計
- 第12課+明朝的興亡【中職專用】《中國歷史》(高教版2023基礎(chǔ)模塊)
- 《結(jié)構(gòu)工程英語》課件
- 住宅小區(qū)清潔服務(wù) 投標方案(技術(shù)方案)
- 供應(yīng)商選擇風(fēng)險評估表
- 2021年重慶萬州上海中學(xué)高一物理聯(lián)考試題含解析
- 腦筋急轉(zhuǎn)彎大全及答案 (500題)
- 馬克思主義基本原理概論第五章 資本主義發(fā)展的歷史進程
- 家庭電路與安全用電課件 蘇科版物理九年級下冊
評論
0/150
提交評論