黑龍江省哈爾濱市第六十中學(xué)2024屆中考二模數(shù)學(xué)試題含解析_第1頁
黑龍江省哈爾濱市第六十中學(xué)2024屆中考二模數(shù)學(xué)試題含解析_第2頁
黑龍江省哈爾濱市第六十中學(xué)2024屆中考二模數(shù)學(xué)試題含解析_第3頁
黑龍江省哈爾濱市第六十中學(xué)2024屆中考二模數(shù)學(xué)試題含解析_第4頁
黑龍江省哈爾濱市第六十中學(xué)2024屆中考二模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省哈爾濱市第六十中學(xué)2024屆中考二模數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.下列四個(gè)函數(shù)圖象中,當(dāng)x<0時(shí),函數(shù)值y隨自變量x的增大而減小的是()A. B. C. D.2.化簡:-,結(jié)果正確的是()A.1 B. C. D.3.我國古代數(shù)學(xué)名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設(shè)大馬有匹,小馬有匹,則可列方程組為()A. B.C. D.4.如圖,在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)A在x軸正半軸上,OC是△OAB的中線,點(diǎn)B、C在反比例函數(shù)y=(x>0)的圖象上,則△OAB的面積等于()A.2 B.3 C.4 D.65.估算的運(yùn)算結(jié)果應(yīng)在(

)A.2到3之間 B.3到4之間C.4到5之間 D.5到6之間6.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點(diǎn)E,交AC于點(diǎn)F,若D為BC邊上的中點(diǎn),M為線段EF上一點(diǎn),則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm7.的值是A.±3 B.3 C.9 D.818.關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是A. B. C. D.9.化簡的結(jié)果為()A.﹣1 B.1 C. D.10.估計(jì)﹣1的值在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間二、填空題(共7小題,每小題3分,滿分21分)11.如果,那么的結(jié)果是______.12.已知x(x+1)=x+1,則x=________.13.如圖,在平面直角坐標(biāo)系中,菱形OABC的面積為12,點(diǎn)B在y軸上,點(diǎn)C在反比例函數(shù)y=的圖象上,則k的值為________.14.如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)A的坐標(biāo)為(3,0),頂點(diǎn)B在y軸正半軸上,頂點(diǎn)D在x軸負(fù)半軸上.若拋物線y=-x2-5x+c經(jīng)過點(diǎn)B、C,則菱形ABCD的面積為_______.15.如圖,在矩形ABCD中,E是AD邊的中點(diǎn),,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:∽;;;其中正確的結(jié)論有______.16.A.如果一個(gè)正多邊形的一個(gè)外角是45°,那么這個(gè)正多邊形對(duì)角線的條數(shù)一共有_____條.B.用計(jì)算器計(jì)算:?tan63°27′≈_____(精確到0.01).17.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC其中正確的是_____(填序號(hào))三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(4,0)與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線1,交拋物線與點(diǎn)Q.求拋物線的解析式;當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線1交BD于點(diǎn)M,試探究m為何值時(shí),四邊形CQMD是平行四邊形;在點(diǎn)P運(yùn)動(dòng)的過程中,坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,使△BDQ是以BD為直角邊的直角三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.19.(5分)隨著高鐵的建設(shè),春運(yùn)期間動(dòng)車組發(fā)送旅客量越來越大,相關(guān)部門為了進(jìn)一步了解春運(yùn)期間動(dòng)車組發(fā)送旅客量的變化情況,針對(duì)2014年至2018年春運(yùn)期間的鐵路發(fā)送旅客量情況進(jìn)行了調(diào)查,過程如下.(Ⅰ)收集、整理數(shù)據(jù)請(qǐng)將表格補(bǔ)充完整:(Ⅱ)描述數(shù)據(jù)為了更直觀地顯示動(dòng)車組發(fā)送旅客量占比的變化趨勢(shì),需要用什么圖(回答“折線圖”或“扇形圖”)進(jìn)行描述;(Ⅲ)分析數(shù)據(jù)、做出推測(cè)預(yù)估2019年春運(yùn)期間動(dòng)車組發(fā)送旅客量占比約為多少,說明你的預(yù)估理由.20.(8分)如圖,直線l切⊙O于點(diǎn)A,點(diǎn)P為直線l上一點(diǎn),直線PO交⊙O于點(diǎn)C、B,點(diǎn)D在線段AP上,連接DB,且AD=DB.(1)求證:DB為⊙O的切線;(2)若AD=1,PB=BO,求弦AC的長.21.(10分)在矩形ABCD中,AD=2AB,E是AD的中點(diǎn),一塊三角板的直角頂點(diǎn)與點(diǎn)E重合,兩直角邊與AB,BC分別交于點(diǎn)M,N,求證:BM=CN.22.(10分)如圖,已知□ABCD的面積為S,點(diǎn)P、Q時(shí)是?ABCD對(duì)角線BD的三等分點(diǎn),延長AQ、AP,分別交BC,CD于點(diǎn)E,F(xiàn),連結(jié)EF。甲,乙兩位同學(xué)對(duì)條件進(jìn)行分析后,甲得到結(jié)論①:“E是BC中點(diǎn)”.乙得到結(jié)論②:“四邊形QEFP的面積為S”。請(qǐng)判斷甲乙兩位同學(xué)的結(jié)論是否正確,并說明理由.23.(12分)如圖,將平行四邊形ABCD紙片沿EF折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)D落在點(diǎn)G處.(1)連接CF,求證:四邊形AECF是菱形;(2)若E為BC中點(diǎn),BC=26,tan∠B=,求EF的長.24.(14分)王老師對(duì)試卷講評(píng)課中九年級(jí)學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,每位學(xué)生最終評(píng)價(jià)結(jié)果為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng)中的一項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:(1)在這次評(píng)價(jià)中,一共抽查了

名學(xué)生;(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在扇形的圓心角度數(shù)為

度;(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;(4)如果全市九年級(jí)學(xué)生有8000名,那么在試卷評(píng)講課中,“獨(dú)立思考”的九年級(jí)學(xué)生約有多少人?

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

A、根據(jù)函數(shù)的圖象可知y隨x的增大而增大,故本選項(xiàng)錯(cuò)誤;B、根據(jù)函數(shù)的圖象可知在第二象限內(nèi)y隨x的增大而減增大,故本選項(xiàng)錯(cuò)誤;C、根據(jù)函數(shù)的圖象可知,當(dāng)x<0時(shí),在對(duì)稱軸的右側(cè)y隨x的增大而減小,在對(duì)稱軸的左側(cè)y隨x的增大而增大,故本選項(xiàng)錯(cuò)誤;D、根據(jù)函數(shù)的圖象可知,當(dāng)x<0時(shí),y隨x的增大而減??;故本選項(xiàng)正確.故選D.【點(diǎn)睛】本題考查了函數(shù)的圖象,函數(shù)的增減性,熟練掌握各函數(shù)的性質(zhì)是解題的關(guān)鍵.2、B【解析】

先將分母進(jìn)行通分,化為(x+y)(x-y)的形式,分子乘上相應(yīng)的分式,進(jìn)行化簡.【詳解】【點(diǎn)睛】本題考查的是分式的混合運(yùn)算,解題的關(guān)鍵就是熟練掌握運(yùn)算規(guī)則.3、B【解析】

設(shè)大馬有匹,小馬有匹,根據(jù)題意可得等量關(guān)系:大馬數(shù)+小馬數(shù)=100,大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程即可.【詳解】解:設(shè)大馬有匹,小馬有匹,由題意得:,故選:B.【點(diǎn)睛】本題主要考查的是由實(shí)際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.4、B【解析】

作BD⊥x軸于D,CE⊥x軸于E,∴BD∥CE,∴,∵OC是△OAB的中線,∴,設(shè)CE=x,則BD=2x,∴C的橫坐標(biāo)為,B的橫坐標(biāo)為,∴OD=,OE=,∴DE=OE-OD=﹣=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA?BD=×=1.故選B.點(diǎn)睛:本題是反比例函數(shù)與幾何的綜合題,熟知反比例函數(shù)的圖象上點(diǎn)的特征和相似三角形的判定和性質(zhì)是解題的關(guān)鍵.5、D【解析】

解:=,∵2<<3,∴在5到6之間.故選D.【點(diǎn)睛】此題主要考查了估算無理數(shù)的大小,正確進(jìn)行計(jì)算是解題關(guān)鍵.6、C【解析】

連接AD,由于△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點(diǎn)B關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點(diǎn)B關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點(diǎn)睛】本題考查的是軸對(duì)稱﹣?zhàn)疃搪肪€問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.7、C【解析】試題解析:∵∴的值是3故選C.8、A【解析】

根據(jù)一元二次方程的根的判別式,建立關(guān)于m的不等式,求出m的取值范圍即可.【詳解】∵關(guān)于x的一元二次方程x2﹣3x+m=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故選A.【點(diǎn)睛】本題考查了根的判別式,解題的關(guān)鍵在于熟練掌握一元二次方程根的情況與判別式△的關(guān)系,即:(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;(3)△<0?方程沒有實(shí)數(shù)根.9、B【解析】

先把分式進(jìn)行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.10、B【解析】

根據(jù),可得答案.【詳解】解:∵,∴,∴∴﹣1的值在2和3之間.故選B.【點(diǎn)睛】本題考查了估算無理數(shù)的大小,先確定的大小,在確定答案的范圍.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

令k,則a=2k,b=3k,代入到原式化簡的結(jié)果計(jì)算即可.【詳解】令k,則a=2k,b=3k,∴原式=1.故答案為:1.【點(diǎn)睛】本題考查了約分,解題的關(guān)鍵是掌握約分的定義:約去分式的分子與分母的公因式,不改變分式的值,這樣的分式變形叫做分式的約分.12、1或-1【解析】方程可化為:,∴或,∴或.故答案為1或-1.13、-6【解析】因?yàn)樗倪呅蜲ABC是菱形,所以對(duì)角線互相垂直平分,則點(diǎn)A和點(diǎn)C關(guān)于y軸對(duì)稱,點(diǎn)C在反比例函數(shù)上,設(shè)點(diǎn)C的坐標(biāo)為(x,),則點(diǎn)A的坐標(biāo)為(-x,),點(diǎn)B的坐標(biāo)為(0,),因此AC=-2x,OB=,根據(jù)菱形的面積等于對(duì)角線乘積的一半得:,解得14、【解析】

根據(jù)拋物線的解析式結(jié)合拋物線過點(diǎn)B、C,即可得出點(diǎn)C的橫坐標(biāo),由菱形的性質(zhì)可得出AD=AB=BC=1,再根據(jù)勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.【詳解】拋物線的對(duì)稱軸為x=-.∵拋物線y=-x2-1x+c經(jīng)過點(diǎn)B、C,且點(diǎn)B在y軸上,BC∥x軸,∴點(diǎn)C的橫坐標(biāo)為-1.∵四邊形ABCD為菱形,∴AB=BC=AD=1,∴點(diǎn)D的坐標(biāo)為(-2,0),OA=2.在Rt△ABC中,AB=1,OA=2,∴OB==4,∴S菱形ABCD=AD?OB=1×4=3.故答案為3.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)、菱形的性質(zhì)以及平行四邊形的面積,根據(jù)二次函數(shù)的性質(zhì)、菱形的性質(zhì)結(jié)合勾股定理求出AD=1、OB=4是解題的關(guān)鍵.15、【解析】

①證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;③作DM∥EB交BC于M,交AC于N,證明DM垂直平分CF,即可證明;④設(shè)AE=a,AB=b,則AD=2a,根據(jù)△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.【詳解】如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點(diǎn)F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,即CF=2AF,∴CF=2AF,故②正確;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點(diǎn)F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,∴,即b=a,∴tan∠CAD=,故④錯(cuò)誤;故答案為:①②③.【點(diǎn)睛】本題主要考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計(jì)算以及解直角三角形的綜合應(yīng)用,正確的作出輔助線構(gòu)造平行四邊形是解題的關(guān)鍵.16、205.1【解析】

A、先根據(jù)多邊形外角和為360°且各外角相等求得邊數(shù),再根據(jù)多邊形對(duì)角線條數(shù)的計(jì)算公式計(jì)算可得;B、利用計(jì)算器計(jì)算可得.【詳解】A、根據(jù)題意,此正多邊形的邊數(shù)為360°÷45°=8,則這個(gè)正多邊形對(duì)角線的條數(shù)一共有=20,故答案為20;B、?tan63°27′≈2.646×2.001≈5.1,故答案為5.1.【點(diǎn)睛】本題主要考查計(jì)算器-三角函數(shù),解題的關(guān)鍵是掌握多邊形的內(nèi)角與外角、對(duì)角線計(jì)算公式及計(jì)算器的使用.17、①②④【解析】

由正方形的性質(zhì)和相似三角形的判定與性質(zhì),即可得出結(jié)論.【詳解】∵△BPC是等邊三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正確;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正確;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD與△PDB不會(huì)相似;故③錯(cuò)誤;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH?PC,故④正確;故答案是:①②④.【點(diǎn)睛】本題考查的正方形的性質(zhì),等邊三角形的性質(zhì)以及相似三角形的判定和性質(zhì),解答此題的關(guān)鍵是熟練掌握性質(zhì)和定理.三、解答題(共7小題,滿分69分)18、(1);(2)當(dāng)m=2時(shí),四邊形CQMD為平行四邊形;(3)Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2)【解析】

(1)直接將A(-1,0),B(4,0)代入拋物線y=x2+bx+c方程即可;

(2)由(1)中的解析式得出點(diǎn)C的坐標(biāo)C(0,-2),從而得出點(diǎn)D(0,2),求出直線BD:y=?x+2,設(shè)點(diǎn)M(m,?m+2),Q(m,m2?m?2),可得MQ=?m2+m+4,根據(jù)平行四邊形的性質(zhì)可得QM=CD=4,即?m2+m+4=4可解得m=2;

(3)由Q是以BD為直角邊的直角三角形,所以分兩種情況討論,①當(dāng)∠BDQ=90°時(shí),則BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),②當(dāng)∠DBQ=90°時(shí),則BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2).【詳解】(1)由題意知,∵點(diǎn)A(﹣1,0),B(4,0)在拋物線y=x2+bx+c上,∴解得:∴所求拋物線的解析式為(2)由(1)知拋物線的解析式為,令x=0,得y=﹣2∴點(diǎn)C的坐標(biāo)為C(0,﹣2)∵點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱∴點(diǎn)D的坐標(biāo)為D(0,2)設(shè)直線BD的解析式為:y=kx+2且B(4,0)∴0=4k+2,解得:∴直線BD的解析式為:∵點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線1,交BD于點(diǎn)M,交拋物線與點(diǎn)Q∴可設(shè)點(diǎn)M,Q∴MQ=∵四邊形CQMD是平行四邊形∴QM=CD=4,即=4解得:m1=2,m2=0(舍去)∴當(dāng)m=2時(shí),四邊形CQMD為平行四邊形(3)由題意,可設(shè)點(diǎn)Q且B(4,0)、D(0,2)∴BQ2=DQ2=BD2=20①當(dāng)∠BDQ=90°時(shí),則BD2+DQ2=BQ2,∴解得:m1=8,m2=﹣1,此時(shí)Q1(8,18),Q2(﹣1,0)②當(dāng)∠DBQ=90°時(shí),則BD2+BQ2=DQ2,∴解得:m3=3,m4=4,(舍去)此時(shí)Q3(3,﹣2)∴滿足條件的點(diǎn)Q的坐標(biāo)有三個(gè),分別為:Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2).【點(diǎn)睛】此題考查了待定系數(shù)法求解析式,還考查了平行四邊形及直角三角形的定義,要注意第3問分兩種情形求解.19、(Ⅰ)見表格;(Ⅱ)折線圖;(Ⅲ)60%、之前每年增加的百分比依次為7%、6%、5%、4%,據(jù)此預(yù)測(cè)2019年增加的百分比接近3%.【解析】

(Ⅰ)根據(jù)百分比的意義解答可得;(Ⅱ)根據(jù)折線圖和扇形圖的特點(diǎn)選擇即可得;(Ⅲ)根據(jù)之前每年增加的百分比依次為7%、6%、5%、4%,據(jù)此預(yù)測(cè)2019年增加的百分比接近3%.【詳解】(Ⅰ)年份20142015201620172018動(dòng)車組發(fā)送旅客量a億人次0.871.141.461.802.17鐵路發(fā)送旅客總量b億人次2.522.763.073.423.82動(dòng)車組發(fā)送旅客量占比×10034.5%41.3%47.6%52.6%56.8%(Ⅱ)為了更直觀地顯示動(dòng)車組發(fā)送旅客量占比的變化趨勢(shì),需要用折線圖進(jìn)行描述,故答案為折線圖;(Ⅲ)預(yù)估2019年春運(yùn)期間動(dòng)車組發(fā)送旅客量占比約為60%,預(yù)估理由是之前每年增加的百分比依次為7%、6%、5%、4%,據(jù)此預(yù)測(cè)2019年增加的百分比接近3%.【點(diǎn)睛】本題考查了統(tǒng)計(jì)圖的選擇,根據(jù)統(tǒng)計(jì)圖的特點(diǎn)正確選擇統(tǒng)計(jì)圖是解題的關(guān)鍵.20、(1)見解析;(2)AC=1.【解析】

(1)要證明DB為⊙O的切線,只要證明∠OBD=90即可.(2)根據(jù)已知及直角三角形的性質(zhì)可以得到PD=2BD=2DA=2,再利用等角對(duì)等邊可以得到AC=AP,這樣求得AP的值就得出了AC的長.【詳解】(1)證明:連接OD;∵PA為⊙O切線,∴∠OAD=90°;在△OAD和△OBD中,,∴△OAD≌△OBD,∴∠OBD=∠OAD=90°,∴OB⊥BD∴DB為⊙O的切線(2)解:在Rt△OAP中;∵PB=OB=OA,∴OP=2OA,∴∠OPA=10°,∴∠POA=60°=2∠C,∴PD=2BD=2DA=2,∴∠OPA=∠C=10°,∴AC=AP=1.【點(diǎn)睛】本題考查了切線的判定及性質(zhì),全等三全角形的判定等知識(shí)點(diǎn)的掌握情況.21、證明見解析.【解析】試題分析:作于點(diǎn)F,然后證明≌,從而求出所所以BM與CN的長度相等.試題解析:在矩形ABCD中,AD=2AB,E是AD的中點(diǎn),作EF⊥BC于點(diǎn)F,則有AB=AE=EF=FC,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,∵E為AB的中點(diǎn),∴AB=CF,∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.22、①結(jié)論一正確,理由見解析;②結(jié)論二正確,S四QEFP=S【解析】試題分析:(1)由已知條件易得△BEQ∽△DAQ,結(jié)合點(diǎn)Q是BD的三等分點(diǎn)可得BE:AD=BQ:DQ=1:2,再結(jié)合AD=BC即可得到BE:BC=1:2,從而可得點(diǎn)E是BC的中點(diǎn),由此即可說明甲同學(xué)的結(jié)論①成立;(2)同(1)易證點(diǎn)F是CD的中點(diǎn),由此可得EF∥BD,EF=BD,從而可得△CEF∽△CBD,則可得得到S△CEF=S△CBD=S平行四邊形ABCD=S,結(jié)合S四邊形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,結(jié)合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四邊形QEFP=S△AEF-S△AQP=S,從而說明乙的結(jié)論②正確;試題解析:甲和乙的結(jié)論都成立,理由如下:(1)∵在平行四邊形ABCD中,AD∥BC,∴△BEQ∽△DAQ,又∵點(diǎn)P、Q是線段BD的三等分點(diǎn),∴BE:AD=BQ:DQ=1:2,∵AD=BC,∴BE:BC=1:2,∴點(diǎn)E是BC的中點(diǎn),即結(jié)論①正確;(2)和(1)同理可得點(diǎn)F是CD的中點(diǎn),∴EF∥BD,EF=BD,∴△CEF∽△CBD,∴S△CEF=S△CBD=S平行四邊形ABCD=S,∵S四邊形AECF=S△ACE+S△ACF=S平行四邊形ABCD=S,∴S△AEF=S四邊形AECF-S△CEF=S,∵EF∥BD,∴△AQP∽△AEF,又∵EF=BD,PQ=BD,∴QP:EF=2:3,∴S△AQP=S△AEF=,∴S四邊形QEFP=S△AEF-S△AQP=S-=S,即結(jié)論②正確.綜上所述,甲、乙兩位同學(xué)的結(jié)論都正確.23、(1)證明見解析;(2)EF=1.【解析】

(1)如圖1,利用折疊性質(zhì)得EA=EC,∠1=∠2,再證明∠1=∠3得到AE=AF,則可判斷四邊形AECF為平行四邊形,從而得到四邊形AECF為菱形;(2)作EH⊥AB于H,如圖,利用四邊形AECF為菱形得到AE=AF=CE=13,則判斷四邊形ABEF為平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論