河北省保定市冀英校2024屆中考四模數(shù)學試題含解析_第1頁
河北省保定市冀英校2024屆中考四模數(shù)學試題含解析_第2頁
河北省保定市冀英校2024屆中考四模數(shù)學試題含解析_第3頁
河北省保定市冀英校2024屆中考四模數(shù)學試題含解析_第4頁
河北省保定市冀英校2024屆中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河北省保定市冀英校2024屆中考四模數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖是由若干個相同的小正方體搭成的一個幾何體的主視圖和俯視圖,則所需的小正方體的個數(shù)最少是()A. B. C. D.2.已知一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形3.如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當y>0時,﹣1<x<3,其中正確的個數(shù)是()A.1 B.2 C.3 D.44.如圖,AB∥ED,CD=BF,若△ABC≌△EDF,則還需要補充的條件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E5.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)6.如圖,數(shù)軸上有A,B,C,D四個點,其中表示互為倒數(shù)的點是()A.點A與點B B.點A與點D C.點B與點D D.點B與點C7.若||=-,則一定是()A.非正數(shù) B.正數(shù) C.非負數(shù) D.負數(shù)8.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.9.單項式2a3b的次數(shù)是()A.2 B.3 C.4 D.510.一元一次不等式2(1+x)>1+3x的解集在數(shù)軸上表示為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.農(nóng)科院新培育出A、B兩種新麥種,為了了解它們的發(fā)芽情況,在推廣前做了五次發(fā)芽實驗,每次隨機各自取相同種子數(shù),在相同的培育環(huán)境中分別實驗,實驗情況記錄如下:種子數(shù)量10020050010002000A出芽種子數(shù)961654919841965發(fā)芽率0.960.830.980.980.98B出芽種子數(shù)961924869771946發(fā)芽率0.960.960.970.980.97下面有三個推斷:①當實驗種子數(shù)量為100時,兩種種子的發(fā)芽率均為0.96,所以他們發(fā)芽的概率一樣;②隨著實驗種子數(shù)量的增加,A種子出芽率在0.98附近擺動,顯示出一定的穩(wěn)定性,可以估計A種子出芽的概率是0.98;③在同樣的地質(zhì)環(huán)境下播種,A種子的出芽率可能會高于B種子.其中合理的是__________(只填序號).12.下面是“利用直角三角形作矩形”尺規(guī)作圖的過程.已知:如圖1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如圖2,(1)分別以點A、C為圓心,大于AC同樣長為半徑作弧,兩弧交于點E、F;(2)作直線EF,直線EF交AC于點O;(3)作射線BO,在BO上截取OD,使得OD=OB;(4)連接AD,CD.∴四邊形ABCD就是所求作的矩形.老師說,“小明的作法正確.”請回答,小明作圖的依據(jù)是:__________________________________________________.13.如圖,點A、B、C在圓O上,弦AC與半徑OB互相平分,那么∠AOC度數(shù)為_____度.14.已知點P(a,b)在反比例函數(shù)y=的圖象上,則ab=_____.15.在一個不透明的布袋中,紅色、黑色的玻璃球共有20個,這些球除顏色外其它完全相同.將袋中的球攪勻,從中隨機摸出一個球,記下顏色后再放回袋中,不斷地重復這個過程,摸了200次后,發(fā)現(xiàn)有60次摸到黑球,請你估計這個袋中紅球約有_____個.16.點A(-2,1)在第_______象限.三、解答題(共8題,共72分)17.(8分)如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).(1)求拋物線解析式及頂點坐標;(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;(3)①當四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.18.(8分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:本次調(diào)查的學生有多少人?補全上面的條形統(tǒng)計圖;扇形統(tǒng)計圖中C對應的中心角度數(shù)是;若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?19.(8分)為獎勵優(yōu)秀學生,某校準備購買一批文具袋和圓規(guī)作為獎品,已知購買1個文具袋和2個圓規(guī)需21元,購買2個文具袋和3個圓規(guī)需39元。求文具袋和圓規(guī)的單價。學校準備購買文具袋20個,圓規(guī)若干,文具店給出兩種優(yōu)惠方案:方案一:購買一個文具袋還送1個圓規(guī)。方案二:購買圓規(guī)10個以上時,超出10個的部分按原價的八折優(yōu)惠,文具袋不打折.①設購買面規(guī)m個,則選擇方案一的總費用為______,選擇方案二的總費用為______.②若學校購買圓規(guī)100個,則選擇哪種方案更合算?請說明理由.20.(8分)某校七年級(1)班班主任對本班學生進行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據(jù)調(diào)查結果發(fā)現(xiàn)該班每個學生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學生都進行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結合圖中所給信息解答下列問題:七年級(1)班學生總人數(shù)為_______人,扇形統(tǒng)計圖中D類所對應扇形的圓心角為_____度,請補全條形統(tǒng)計圖;學校將舉行書法和繪畫比賽,每班需派兩名學生參加,A類4名學生中有兩名學生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A類4名學生中隨機抽取兩名學生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學生恰好是一名擅長書法,另一名擅長繪畫的概率.21.(8分)如圖,在平面直角坐標系中,直線y=x+2與x軸,y軸分別交于A,B兩點,點C(2,m)為直線y=x+2上一點,直線y=﹣x+b過點C.求m和b的值;直線y=﹣x+b與x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動.設點P的運動時間為t秒.①若點P在線段DA上,且△ACP的面積為10,求t的值;②是否存在t的值,使△ACP為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.22.(10分)如圖,已知:,,,求證:.23.(12分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.24.在△ABC中,,以邊AB上一點O為圓心,OA為半徑的圈與BC相切于點D,分別交AB,AC于點E,F(xiàn)如圖①,連接AD,若,求∠B的大?。蝗鐖D②,若點F為的中點,的半徑為2,求AB的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

主視圖、俯視圖是分別從物體正面、上面看,所得到的圖形.【詳解】綜合主視圖和俯視圖,底層最少有個小立方體,第二層最少有個小立方體,因此搭成這個幾何體的小正方體的個數(shù)最少是個.故選:B.【點睛】此題考查由三視圖判斷幾何體,解題關鍵在于識別圖形2、D【解析】

根據(jù)多邊形的外角和是360°,以及多邊形的內(nèi)角和定理即可求解.【詳解】設多邊形的邊數(shù)是n,則(n?2)?180=3×360,解得:n=8.故選D.【點睛】此題考查多邊形內(nèi)角與外角,解題關鍵在于掌握其定理.3、B【解析】分析:直接利用二次函數(shù)圖象的開口方向以及圖象與x軸的交點,進而分別分析得出答案.詳解:①∵二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,且開口向下,∴x=1時,y=a+b+c,即二次函數(shù)的最大值為a+b+c,故①正確;②當x=﹣1時,a﹣b+c=0,故②錯誤;③圖象與x軸有2個交點,故b2﹣4ac>0,故③錯誤;④∵圖象的對稱軸為x=1,與x軸交于點A、點B(﹣1,0),∴A(3,0),故當y>0時,﹣1<x<3,故④正確.故選B.點睛:此題主要考查了二次函數(shù)的性質(zhì)以及二次函數(shù)最值等知識,正確得出A點坐標是解題關鍵.4、C【解析】

根據(jù)平行線性質(zhì)和全等三角形的判定定理逐個分析.【詳解】由,得∠B=∠D,因為,若≌,則還需要補充的條件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故選C【點睛】本題考核知識點:全等三角形的判定.解題關鍵點:熟記全等三角形判定定理.5、D【解析】

過點C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質(zhì)以及一次函數(shù)的應用,熟練掌握相關知識點是解答的關鍵.6、A【解析】

試題分析:主要考查倒數(shù)的定義和數(shù)軸,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).根據(jù)倒數(shù)定義可知,-2的倒數(shù)是-,有數(shù)軸可知A對應的數(shù)為-2,B對應的數(shù)為-,所以A與B是互為倒數(shù).故選A.考點:1.倒數(shù)的定義;2.數(shù)軸.7、A【解析】

根據(jù)絕對值的性質(zhì)進行求解即可得.【詳解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正數(shù),故選A.【點睛】本題考查了絕對值的性質(zhì),熟練掌握絕對值的性質(zhì)是解題的關鍵.絕對值的性質(zhì):一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);1的絕對值是1.8、B【解析】

如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,

NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.

∵四邊形ABCD是菱形,AB=4,∠DAB=60°,

∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB

∴∠HDE=∠DAB=60°,

∵點E是CD中點

∴DE=CD=1

在Rt△DEH中,DE=1,∠HDE=60°

∴DH=1,HE=

∴AH=AD+DH=5

在Rt△AHE中,AE==1

∴AN=NE=,AE⊥GF,AF=EF

∵CD=BC,∠DCB=60°

∴△BCD是等邊三角形,且E是CD中點

∴BE⊥CD,

∵BC=4,EC=1

∴BE=1

∵CD∥AB

∴∠ABE=∠BEC=90°

在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.

∴EF=由折疊性質(zhì)可得∠AFG=∠EFG,

∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質(zhì),勾股定理,添加恰當?shù)妮o助線構造直角三角形,利用勾股定理求線段長度是本題的關鍵.9、C【解析】分析:根據(jù)單項式的性質(zhì)即可求出答案.詳解:該單項式的次數(shù)為:3+1=4故選C.點睛:本題考查單項式的次數(shù)定義,解題的關鍵是熟練運用單項式的次數(shù)定義,本題屬于基礎題型.10、B【解析】

按照解一元一次不等式的步驟求解即可.【詳解】去括號,得2+2x>1+3x;移項合并同類項,得x<1,所以選B.【點睛】數(shù)形結合思想是初中常用的方法之一.二、填空題(本大題共6個小題,每小題3分,共18分)11、②③【解析】分析:根據(jù)隨機事件發(fā)生的“頻率”與“概率”的關系進行分析解答即可.詳解:(1)由表中的數(shù)據(jù)可知,當實驗種子數(shù)量為100時,兩種種子的發(fā)芽率雖然都是96%,但結合后續(xù)實驗數(shù)據(jù)可知,此時的發(fā)芽率并不穩(wěn)定,故不能確定兩種種子發(fā)芽的概率就是96%,所以①中的說法不合理;(2)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,故可以估計A種種子發(fā)芽的概率是98%,所以②中的說法是合理的;(3)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,而B種種子發(fā)芽的頻率穩(wěn)定在97%左右,故可以估計在相同條件下,A種種子發(fā)芽率大于B種種子發(fā)芽率,所以③中的說法是合理的.故答案為:②③.點睛:理解“隨機事件發(fā)生的頻率與概率之間的關系”是正確解答本題的關鍵.12、到線段兩端點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個角為90°的平行四邊形為矩形【解析】

先利用作法判定OA=OC,OD=OB,則根據(jù)平行四邊形的判定方法判斷四邊形ABCD為平行四邊形,然后根據(jù)矩形的判定方法判斷四邊形ABCD為矩形.【詳解】解:由作法得EF垂直平分AC,則OA=OC,而OD=OB,所以四邊形ABCD為平行四邊形,而∠ABC=90°,所以四邊形ABCD為矩形.故答案為到線段兩段點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個內(nèi)角為90°的平行四邊形為矩形.【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質(zhì),結合幾何圖形的基本性質(zhì)把復雜作圖拆解成基本作圖,逐步操作.13、1.【解析】

首先根據(jù)垂徑定理得到OA=AB,結合等邊三角形的性質(zhì)即可求出∠AOC的度數(shù).【詳解】解:∵弦AC與半徑OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等邊三角形,∴∠AOB=60°,∴∠AOC=1°,故答案為1.【點睛】本題主要考查了垂徑定理的知識,解題的關鍵是證明△OAB是等邊三角形,此題難度不大.14、2【解析】【分析】接把點P(a,b)代入反比例函數(shù)y=即可得出結論.【詳解】∵點P(a,b)在反比例函數(shù)y=的圖象上,∴b=,∴ab=2,故答案為:2.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.15、1【解析】

估計利用頻率估計概率可估計摸到黑球的概率為0.3,然后根據(jù)概率公式計算這個口袋中黑球的數(shù)量,繼而得出答案.【詳解】因為共摸了200次球,發(fā)現(xiàn)有60次摸到黑球,所以估計摸到黑球的概率為0.3,所以估計這個口袋中黑球的數(shù)量為20×0.3=6(個),則紅球大約有20-6=1個,故答案為:1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.16、二【解析】

根據(jù)點在第二象限的坐標特點解答即可.【詳解】∵點A的橫坐標-2<0,縱坐標1>0,∴點A在第二象限內(nèi).故答案為:二.【點睛】本題主要考查了平面直角坐標系中各個象限的點的坐標的符號特點:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答題(共8題,共72分)17、(1)拋物線解析式為,頂點為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】

(1)已知了拋物線的對稱軸解析式,可用頂點式二次函數(shù)通式來設拋物線,然后將A、B兩點坐標代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據(jù)E點的橫坐標,用拋物線的解析式求出E點的縱坐標,那么E點縱坐標的絕對值即為△OAE的高,由此可根據(jù)三角形的面積公式得出△AOE的面積與x的函數(shù)關系式進而可得出S與x的函數(shù)關系式.(3)①將S=24代入S,x的函數(shù)關系式中求出x的值,即可得出E點的坐標和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據(jù)此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應該是等腰直角三角形,即E點的坐標為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點.【詳解】(1)由拋物線的對稱軸是,可設解析式為.把A、B兩點坐標代入上式,得解之,得故拋物線解析式為,頂點為(2)∵點在拋物線上,位于第四象限,且坐標適合,∴y<0,即-y>0,-y表示點E到OA的距離.∵OA是的對角線,∴.因為拋物線與軸的兩個交點是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據(jù)題意,當S=24時,即.化簡,得解之,得故所求的點E有兩個,分別為E1(3,-4),E2(4,-4).點E1(3,-4)滿足OE=AE,所以是菱形;點E2(4,-4)不滿足OE=AE,所以不是菱形.②當OA⊥EF,且OA=EF時,是正方形,此時點E的坐標只能是(3,-3).而坐標為(3,-3)的點不在拋物線上,故不存在這樣的點E,使為正方形.18、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解析】

(1)根據(jù)喜好A口味的牛奶的學生人數(shù)和所占百分比,即可求出本次調(diào)查的學生數(shù).(2)用調(diào)查總人數(shù)減去A、B、D三種喜好不同口味牛奶的人數(shù),求出喜好C口味牛奶的人數(shù),補全統(tǒng)計圖.再用360°乘以喜好C口味的牛奶人數(shù)所占百分比求出對應中心角度數(shù).(3)用總人數(shù)乘以A、B口味牛奶喜歡人數(shù)所占的百分比得出答案.【詳解】解:(1)本次調(diào)查的學生有30÷20%=150人;(2)C類別人數(shù)為150﹣(30+45+15)=60人,補全條形圖如下:(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約300盒.【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得出必要的信息是解題的關鍵.19、(1)文具袋的單價為15元,圓規(guī)單價為3元;(2)①方案一總費用為元,方案二總費用為元;②方案一更合算.【解析】

(1)設文具袋的單價為x元/個,圓規(guī)的單價為y元/個,根據(jù)“購買1個文具袋和2個圓規(guī)需21元;購買2個文具袋和3個圓規(guī)需39元”,即可得出關于x,y的二元一次方程組,解之即可得出結論;

(2)根據(jù)總價=單價×數(shù)量結合兩種優(yōu)惠方案,設購買面規(guī)m個,分別求出選擇方案一和選擇方案二所需費用,然后代入m=100計算比較后即可得出結論.【詳解】(1)設文具袋的單價為x元,圓規(guī)單價為y元。由題意得解得答:文具袋的單價為15元,圓規(guī)單價為3元。(2)①設圓規(guī)m個,則方案一總費用為:元方案二總費用元故答案為:元;②買圓規(guī)100個時,方案一總費用:元,方案二總費用:元,∴方案一更合算?!军c睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.20、48;105°;2【解析】試題分析:根據(jù)B的人數(shù)和百分比求出總人數(shù),根據(jù)D的人數(shù)和總人數(shù)的得出D所占的百分比,然后得出圓心角的度數(shù),根據(jù)總人數(shù)求出C的人數(shù),然后補全統(tǒng)計圖;記A類學生擅長書法的為A1,擅長繪畫的為A2,根據(jù)題意畫出表格,根據(jù)概率的計算法則得出答案.試題解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),補全圖形如下:(2)記A類學生擅長書法的為A1,擅長繪畫的為A2,則可列下表:

A1

A1

A2

A2

A1

A1

A2

A2

∴由上表可得:P(考點:統(tǒng)計圖、概率的計算.21、(1)4,5;(2)①7;②4或或或8.【解析】

分別令可得b和m的值;根據(jù)的面積公式列等式可得t的值;存在,分三種情況:當時,如圖1,當時,如圖2,當時,如圖3,分別求t的值即可.【詳解】把點代入直線中得:,點,直線過點C,,;由題意得:,中,當時,,,,中,當時,,,,,的面積為10,,,則t的值7秒;存在,分三種情況:當時,如圖1,過C作于E,,,即;當時,如圖2,,,;當時,如圖3,,,,,,,即;綜上,當秒或秒或秒或8秒時,為等腰三角形.【點睛】本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求一次函數(shù)解析式,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論