版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江西省撫州市重點(diǎn)中學(xué)2024-2025學(xué)年高三第二次診斷性考試數(shù)學(xué)試題(2020眉山二診)請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)(,且)在區(qū)間上的值域?yàn)?,則()A. B. C.或 D.或42.圓錐底面半徑為,高為,是一條母線,點(diǎn)是底面圓周上一點(diǎn),則點(diǎn)到所在直線的距離的最大值是()A. B. C. D.3.如圖,在正四棱柱中,,分別為的中點(diǎn),異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且4.設(shè),則A. B. C. D.5.設(shè),若函數(shù)在區(qū)間上有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.6.已知函數(shù),若關(guān)于的方程恰好有3個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.7.已知,則()A. B. C. D.28.設(shè),,,則的大小關(guān)系是()A. B. C. D.9.函數(shù)圖像可能是()A. B. C. D.10.函數(shù)在的圖象大致為()A. B.C. D.11.《九章算術(shù)》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細(xì)的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設(shè),假設(shè)金箠由粗到細(xì)各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤12.函數(shù)的圖像大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數(shù)為________.14.在區(qū)間內(nèi)任意取一個(gè)數(shù),則恰好為非負(fù)數(shù)的概率是________.15.某部門全部員工參加一項(xiàng)社會公益活動(dòng),按年齡分為三組,其人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個(gè)容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總?cè)藬?shù)為__________.16.已知函數(shù)在點(diǎn)處的切線經(jīng)過原點(diǎn),函數(shù)的最小值為,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)為拋物線的焦點(diǎn),,為拋物線上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn).(Ⅰ)若點(diǎn)在線段上,求的最小值;(Ⅱ)當(dāng)時(shí),求點(diǎn)縱坐標(biāo)的取值范圍.18.(12分)已知拋物線的焦點(diǎn)為,直線交于兩點(diǎn)(異于坐標(biāo)原點(diǎn)O).(1)若直線過點(diǎn),,求的方程;(2)當(dāng)時(shí),判斷直線是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),說明理由.19.(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當(dāng)?shù)拿娣e取得最大值時(shí),求AD的長.20.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)設(shè),求三棱錐的體積.21.(12分)已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足:,,求的通項(xiàng)公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;22.(10分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).(1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);(2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
對a進(jìn)行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時(shí),,所以,,所以;當(dāng)時(shí),,所以,,所以.綜上,或,故選C.本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運(yùn)算和數(shù)學(xué)抽象的核心素養(yǎng).2.C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點(diǎn)是底面圓周上一點(diǎn),在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點(diǎn)睛:本題考查空間點(diǎn)線面距離的求法,考查空間想象能力以及計(jì)算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題.3.B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運(yùn)算求解的能力,屬于中檔題.4.C【解析】分析:利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點(diǎn)睛:復(fù)數(shù)是高考中的必考知識,主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運(yùn)算.要注意對實(shí)部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運(yùn)算主要考查除法運(yùn)算,通過分母實(shí)數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運(yùn)算時(shí)特別要注意多項(xiàng)式相乘后的化簡,防止簡單問題出錯(cuò),造成不必要的失分.5.D【解析】令,可得.在坐標(biāo)系內(nèi)畫出函數(shù)的圖象(如圖所示).當(dāng)時(shí),.由得.設(shè)過原點(diǎn)的直線與函數(shù)的圖象切于點(diǎn),則有,解得.所以當(dāng)直線與函數(shù)的圖象切時(shí).又當(dāng)直線經(jīng)過點(diǎn)時(shí),有,解得.結(jié)合圖象可得當(dāng)直線與函數(shù)的圖象有3個(gè)交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.即函數(shù)在區(qū)間上有三個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.選D.點(diǎn)睛:已知函數(shù)零點(diǎn)的個(gè)數(shù)(方程根的個(gè)數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對于一些比較復(fù)雜的函數(shù)的零點(diǎn)問題常用此方法求解.6.D【解析】
討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時(shí),;當(dāng)時(shí),,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.本題考查了利用導(dǎo)數(shù)求函數(shù)的零點(diǎn)問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.7.B【解析】
結(jié)合求得的值,由此化簡所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡求值,考查二倍角公式,屬于中檔題.8.A【解析】
選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因?yàn)閷?shù)函數(shù)在上單調(diào)遞增,所以,因?yàn)閷?shù)函數(shù)在上單調(diào)遞減,所以,因?yàn)橹笖?shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運(yùn)用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、??碱}型.9.D【解析】
先判斷函數(shù)的奇偶性可排除選項(xiàng)A,C,當(dāng)時(shí),可分析函數(shù)值為正,即可判斷選項(xiàng).【詳解】,,即函數(shù)為偶函數(shù),故排除選項(xiàng)A,C,當(dāng)正數(shù)越來越小,趨近于0時(shí),,所以函數(shù),故排除選項(xiàng)B,故選:D本題主要考查了函數(shù)的奇偶性,識別函數(shù)的圖象,屬于中檔題.10.B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.本題考查函數(shù)圖象的判斷,屬于??碱}.11.B【解析】
依題意,金箠由粗到細(xì)各尺重量構(gòu)成一個(gè)等差數(shù)列,則,由此利用等差數(shù)列性質(zhì)求出結(jié)果.【詳解】設(shè)金箠由粗到細(xì)各尺重量依次所成得等差數(shù)列為,設(shè)首項(xiàng),則,公差,.故選B本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.12.A【解析】
根據(jù)排除,,利用極限思想進(jìn)行排除即可.【詳解】解:函數(shù)的定義域?yàn)?,恒成立,排除,,?dāng)時(shí),,當(dāng),,排除,故選:.本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.30【解析】
先將問題轉(zhuǎn)化為二項(xiàng)式的系數(shù)問題,利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的第項(xiàng),令的指數(shù)分別等于2,4,求出特定項(xiàng)的系數(shù).【詳解】由題可得:展開式中的系數(shù)等于二項(xiàng)式展開式中的指數(shù)為2和4時(shí)的系數(shù)之和,由于二項(xiàng)式的通項(xiàng)公式為,令,得展開式的的系數(shù)為,令,得展開式的的系數(shù)為,所以展開式中的系數(shù),故答案為30.本題考查利用二項(xiàng)式展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)的問題,考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題.14.【解析】
先分析非負(fù)數(shù)對應(yīng)的區(qū)間長度,然后根據(jù)幾何概型中的長度模型,即可求解出“恰好為非負(fù)數(shù)”的概率.【詳解】當(dāng)是非負(fù)數(shù)時(shí),,區(qū)間長度是,又因?yàn)閷?yīng)的區(qū)間長度是,所以“恰好為非負(fù)數(shù)”的概率是.故答案為:.本題考查幾何概型中的長度模型,難度較易.解答問題的關(guān)鍵是能判斷出目標(biāo)事件對應(yīng)的區(qū)間長度.15.60【解析】
根據(jù)樣本容量及各組人數(shù)比,可求得C組中的人數(shù);由組中甲、乙二人均被抽到的概率是可求得C組的總?cè)藬?shù),即可由各組人數(shù)比求得總?cè)藬?shù).【詳解】三組人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個(gè)容量為20的樣本,則三組抽取人數(shù)分別.設(shè)組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.本題考查了分層抽樣的定義與簡單應(yīng)用,古典概型概率的簡單應(yīng)用,由各層人數(shù)求總?cè)藬?shù)的應(yīng)用,屬于基礎(chǔ)題.16.0【解析】
求出,求出切線點(diǎn)斜式方程,原點(diǎn)坐標(biāo)代入,求出的值,求,求出單調(diào)區(qū)間,進(jìn)而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點(diǎn),所以,,,.當(dāng)時(shí),;當(dāng)時(shí),.故函數(shù)的最小值,所以.故答案為:0.本題考查導(dǎo)數(shù)的應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義、極值最值,屬于中檔題..三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)【解析】
(1)由拋物線的性質(zhì),當(dāng)軸時(shí),最??;(2)設(shè)點(diǎn),,分別代入拋物線方程和得到三個(gè)方程,消去,得到關(guān)于的一元二次方程,利用判別式即可求出的范圍.【詳解】解:(1)由拋物線的標(biāo)準(zhǔn)方程,,根據(jù)拋物線的性質(zhì),當(dāng)軸時(shí),最小,最小值為,即為4.(2)由題意,設(shè)點(diǎn),,其中,.則,①,②因?yàn)?,,,所?③由①②③,得,由,且,得,解不等式,得點(diǎn)縱坐標(biāo)的范圍為.本題主要考查拋物線的方程和性質(zhì)和二次方程的解的問題,考查運(yùn)算能力,此類問題能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問題解決問題的能力等,易錯(cuò)點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯(cuò)解.18.(1)(2)直線過定點(diǎn)【解析】
設(shè).(1)由題意知,.設(shè)直線的方程為,由得,則,由根與系數(shù)的關(guān)系可得,所以.由,得,解得.所以拋物線的方程為.(2)設(shè)直線的方程為,由得,由根與系數(shù)的關(guān)系可得,所以,解得.所以直線的方程為,所以時(shí),直線過定點(diǎn).19.(1);(2).【解析】
(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當(dāng)時(shí),的面積取得最大值,此時(shí),,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結(jié)合,得,因?yàn)椋?,由,?(2)在中,由余弦定得,因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),的面積取得最大值,此時(shí).在中,由余弦定理得.即.本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道容易題.20.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)取中點(diǎn),連,,根據(jù)平行四邊形,可得,進(jìn)而證得平面平面,利用面面垂直的性質(zhì),得平面,又由,即可得到平面.(Ⅱ)根據(jù)三棱錐的體積公式,利用等積法,即可求解.【詳解】(Ⅰ)取中點(diǎn),連,,由,可得,可得是平行四邊形,則,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中點(diǎn),則,而平面平面,而,∴平面.(Ⅱ)根據(jù)三棱錐的體積公式,得.本題主要考查了空間中線面位置關(guān)系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,以及合理利用“等體積法”求解是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.21.(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)【解析】
(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.(3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 邊境邊防安全培訓(xùn)課件
- 車駕管窗口業(yè)務(wù)課件培訓(xùn)
- 車隊(duì)道路交通安全培訓(xùn)
- 安全三級教育試題
- 2026年人防護(hù)安全知識試題
- 《電動(dòng)機(jī)》物理授課課件
- 2026年小學(xué)心理健康教育領(lǐng)導(dǎo)小組及分工職責(zé)(3篇)
- 2026年密碼機(jī)要崗位考試題庫及答案
- 車間班組長培訓(xùn)內(nèi)容課件
- 車間安全管理教育培訓(xùn)課件
- 智能安全帽解決方案-智能安全帽
- 中醫(yī)臨床路徑18脾胃科
- 2024年版煙霧病和煙霧綜合征診斷與治療專家共識(完整版)
- 零星維修合同模板
- 九三學(xué)社申請入社人員簡歷表
- 聚氨酯門窗研究匯報(bào)
- 醫(yī)院電子病歷四級建設(shè)需求
- 上海2023屆高三二模數(shù)學(xué)卷匯總(全)
- 《銳角三角函數(shù)》復(fù)習(xí)(公開課)課件
- 計(jì)算機(jī)視覺PPT完整全套教學(xué)課件
- YC/T 564-2018基于消費(fèi)體驗(yàn)的中式卷煙感官評價(jià)方法
評論
0/150
提交評論