版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖南省岳陽(yáng)市重點(diǎn)中學(xué)高三沖刺高考模擬數(shù)學(xué)試題(五)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.是邊長(zhǎng)為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.2.已知雙曲線與雙曲線沒(méi)有公共點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.3.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知函數(shù),其圖象關(guān)于直線對(duì)稱(chēng),為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)()A.先向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)保持不變B.先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)保持不變C.先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)保持不變D.先向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)保持不變5.函數(shù)的大致圖象為A. B.C. D.6.已知復(fù)數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.7.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.8.函數(shù)的最大值為,最小正周期為,則有序數(shù)對(duì)為()A. B. C. D.9.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)10.已知,,若,則實(shí)數(shù)的值是()A.-1 B.7 C.1 D.1或711.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.12.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.利用等面積法可以推導(dǎo)出在邊長(zhǎng)為a的正三角形內(nèi)任意一點(diǎn)到三邊的距離之和為定值,類(lèi)比上述結(jié)論,利用等體積法進(jìn)行推導(dǎo),在棱長(zhǎng)為a的正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和也為定值,則這個(gè)定值是______14.若,則____.15.在中,內(nèi)角的對(duì)邊分別是,若,,則____.16.展開(kāi)式中的系數(shù)為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時(shí),若恒成立,求的最大值;(2)記的解集為集合A,若,求實(shí)數(shù)的取值范圍.18.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程(不要求具體過(guò)程);(II)設(shè)P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.19.(12分)已知多面體中,、均垂直于平面,,,,是的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.20.(12分)已知數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)若,為數(shù)列的前項(xiàng)和.求證:.21.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,求的面積的值(或最大值).已知的內(nèi)角,,所對(duì)的邊分別為,,,三邊,,與面積滿足關(guān)系式:,且,求的面積的值(或最大值).22.(10分)已知數(shù)列{an}滿足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=,Sn為數(shù)列{bn}的前n項(xiàng)和,求證:Sn.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過(guò)圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過(guò)作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問(wèn)題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.2.C【解析】
先求得的漸近線方程,根據(jù)沒(méi)有公共點(diǎn),判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒(méi)有公共點(diǎn),所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎(chǔ)題.3.D【解析】
根據(jù)題意,對(duì)于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當(dāng),若為增函數(shù),則①,
當(dāng),若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).4.D【解析】
由函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),得,進(jìn)而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點(diǎn)“先向左平移個(gè)單位長(zhǎng)度,得再將橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)保持不變,得”即可.故選:D【點(diǎn)睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運(yùn)算求解能力,是中檔題5.A【解析】
因?yàn)?,所以函?shù)是偶函數(shù),排除B、D,又,排除C,故選A.6.A【解析】
利用復(fù)數(shù)的乘法、除法運(yùn)算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.7.D【解析】
根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因?yàn)閺?fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.8.B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B9.C【解析】
先化簡(jiǎn)N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因?yàn)镹={x|x(x+3)≤0}={x|-3≤x≤0},又因?yàn)镸={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.10.C【解析】
根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算,化簡(jiǎn)即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運(yùn)算,代入化簡(jiǎn)可得.∴解得.故選:C.【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.11.B【解析】
先根據(jù)復(fù)數(shù)的乘法計(jì)算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫(xiě)出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算以及共軛復(fù)數(shù)的概念,難度較易.12.B【解析】
首先求得兩曲線的交點(diǎn)坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查定積分的概念與計(jì)算,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
計(jì)算正四面體的高,并計(jì)算該正四面體的體積,利用等體積法,可得結(jié)果.【詳解】作平面,為的重心如圖則,所以設(shè)正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和為則故答案為:【點(diǎn)睛】本題考查類(lèi)比推理的應(yīng)用,還考查等體積法,考驗(yàn)理解能力以及計(jì)算能力,屬基礎(chǔ)題.14.【解析】
由,得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡(jiǎn),再利用齊次式即可求出結(jié)果.【詳解】因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查三角函數(shù)化簡(jiǎn)求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運(yùn)用齊次式求值,屬于對(duì)公式的考查以及對(duì)計(jì)算能力的考查.15.【解析】
由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結(jié)合已知聯(lián)立方程組,即可求得角.【詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.【點(diǎn)睛】本題主要考查了求三角形的一個(gè)內(nèi)角,解題關(guān)鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計(jì)算能力,屬于中檔題.16.【解析】
變換,根據(jù)二項(xiàng)式定理計(jì)算得到答案.【詳解】的展開(kāi)式的通項(xiàng)為:,,取和,計(jì)算得到系數(shù)為:.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)【解析】
(1)當(dāng)時(shí),由題意得到,令,分類(lèi)討論求得函數(shù)的最小值,即可求得的最大值.(2)由時(shí),不等式恒成立,轉(zhuǎn)化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當(dāng)時(shí),由,可得,令,則只需,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;故當(dāng)時(shí),取得最小值,即的最大值為.(2)依題意,當(dāng)時(shí),不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查了含絕對(duì)值的不等式的解法,以及不等式的恒成立問(wèn)題的求解與應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與計(jì)算能力.18.(I)x2=4aya>0,x-y+1=0【解析】
(I)利用所給的極坐標(biāo)方程和參數(shù)方程,直接整理化簡(jiǎn)得到直角坐標(biāo)方程和普通方程;(II)聯(lián)立直線的參數(shù)方程和C的直角坐標(biāo)方程,結(jié)合韋達(dá)定理以及等比數(shù)列的性質(zhì)即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數(shù)方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2+22t,y=-1+2t韋達(dá)定理:t1由題意得MN2=PM可得(t即32(a+1)解得a=【點(diǎn)睛】本題考查了極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)和普通方程的互化,以及參數(shù)方程的綜合知識(shí),結(jié)合等比數(shù)列,熟練運(yùn)用知識(shí),屬于較易題.19.(1)見(jiàn)解析;(2).【解析】
(1)取的中點(diǎn),連接、,推導(dǎo)出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過(guò)點(diǎn)作于點(diǎn),就是到平面的距離,也就是點(diǎn)到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點(diǎn),連接、,、分別為、的中點(diǎn),則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過(guò)點(diǎn)作于點(diǎn),平面,平面,,,,平面,即就是到平面的距離,也就是點(diǎn)到平面的距離,設(shè),則到平面的距離,,因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是中檔題.20.(1)(2)證明見(jiàn)解析【解析】
(1)利用求得數(shù)列的通項(xiàng)公式.(2)先將縮小即,由此結(jié)合裂項(xiàng)求和法、放縮法,證得不等式成立.【詳解】(1)∵,令,得.又,兩式相減,得.∴.(2)∵.又∵,,∴.∴.∴.【點(diǎn)睛】本小題主要考查已知求,考查利用放縮法證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21.見(jiàn)解析【解析】
若選擇①,結(jié)合三角形的面積公式,得,化簡(jiǎn)得到,則,又,從而得到,將代入,得.又,∴,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴,故的面積的最大值為,此時(shí).若選擇②,,結(jié)合三角形的面積公式,得,化簡(jiǎn)得到,則,又,從而得到,則,此時(shí)為等腰直角三角形,.若選擇③,,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 某著名企業(yè)山東臨工營(yíng)銷(xiāo)策略和銷(xiāo)售管理項(xiàng)目建議書(shū)004
- 《GBT 14283-2008點(diǎn)焊機(jī)器人 通 用技術(shù)條件》專(zhuān)題研究報(bào)告
- 《GBT 5121.7-2008銅及銅合金化學(xué)分析方法 第7部分:砷含量的測(cè)定》專(zhuān)題研究報(bào)告
- 2026版咨詢(xún)《決策》章節(jié)習(xí)題 第六章建設(shè)方案與比選
- 道路交通安全心理學(xué)課件
- 2026年九年級(jí)語(yǔ)文上冊(cè)期末試題(附答案)
- 2025-2026年蘇課新版八年級(jí)英語(yǔ)上冊(cè)期末考試題庫(kù)(附含答案)
- 2026年福建省公務(wù)員試題及答案
- 2026年公務(wù)員時(shí)政考試題庫(kù)試題解析及答案
- 迪士尼公主介紹課件教案
- 2025年鄭州工業(yè)應(yīng)用技術(shù)學(xué)院馬克思主義基本原理概論期末考試模擬試卷
- 2026年七年級(jí)歷史上冊(cè)期末考試試卷及答案(共六套)
- 2025年六年級(jí)上冊(cè)道德與法治期末測(cè)試卷附答案(完整版)
- 附件二;吊斗安全計(jì)算書(shū)2.16
- 2025年全載錄丨Xsignal 全球AI應(yīng)用行業(yè)年度報(bào)告-
- 雨課堂在線學(xué)堂《西方哲學(xué)-從古希臘哲學(xué)到晚近歐陸哲學(xué)》單元考核測(cè)試答案
- IPC7711C7721C-2017(CN)電子組件的返工修改和維修(完整版)
- 學(xué)堂在線 雨課堂 學(xué)堂云 研究生學(xué)術(shù)與職業(yè)素養(yǎng)講座 章節(jié)測(cè)試答案
- 離婚協(xié)議書(shū)下載電子版完整離婚協(xié)議書(shū)下載三篇
- 磨床設(shè)備點(diǎn)檢表
- LS/T 8008-2010糧油倉(cāng)庫(kù)工程驗(yàn)收規(guī)程
評(píng)論
0/150
提交評(píng)論