江西中醫(yī)藥高等專(zhuān)科學(xué)?!度斯ぶ悄軐?dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
江西中醫(yī)藥高等專(zhuān)科學(xué)校《人工智能導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
江西中醫(yī)藥高等專(zhuān)科學(xué)?!度斯ぶ悄軐?dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
江西中醫(yī)藥高等專(zhuān)科學(xué)?!度斯ぶ悄軐?dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
江西中醫(yī)藥高等專(zhuān)科學(xué)?!度斯ぶ悄軐?dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線(xiàn)第1頁(yè),共3頁(yè)江西中醫(yī)藥高等專(zhuān)科學(xué)?!度斯ぶ悄軐?dǎo)論》

2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的醫(yī)療應(yīng)用中,例如疾病預(yù)測(cè)和診斷輔助,假設(shè)需要確保模型的結(jié)果具有可解釋性和臨床可信賴(lài)性。以下哪種方法能夠增加模型的可信度?()A.與醫(yī)生的經(jīng)驗(yàn)和專(zhuān)業(yè)知識(shí)結(jié)合進(jìn)行驗(yàn)證B.只依靠模型的輸出,不進(jìn)行額外驗(yàn)證C.隱藏模型的內(nèi)部工作原理,避免質(zhì)疑D.不考慮臨床實(shí)際情況,追求高準(zhǔn)確率2、在人工智能的圖像語(yǔ)義分割任務(wù)中,需要將圖像中的每個(gè)像素分配到不同的類(lèi)別,例如將一幅街景圖像中的道路、建筑物、車(chē)輛等區(qū)分開(kāi)來(lái)。假設(shè)圖像中的物體邊界模糊、類(lèi)別多樣,以下哪種方法能夠提高語(yǔ)義分割的精度?()A.使用更高分辨率的圖像進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的分割算法,降低計(jì)算復(fù)雜度C.忽略物體邊界的像素,只關(guān)注主要區(qū)域D.不進(jìn)行任何預(yù)處理,直接對(duì)原始圖像進(jìn)行分割3、當(dāng)利用人工智能進(jìn)行文本摘要生成,從長(zhǎng)篇文章中提取關(guān)鍵信息并形成簡(jiǎn)潔的摘要,以下哪種策略和算法可能是有效的?()A.基于抽取的方法B.基于生成的方法C.融合抽取和生成的方法D.以上都是4、人工智能在金融領(lǐng)域的應(yīng)用不斷拓展,假設(shè)一個(gè)銀行使用人工智能系統(tǒng)進(jìn)行信用評(píng)估,以下關(guān)于這種應(yīng)用的描述,正確的是:()A.人工智能信用評(píng)估系統(tǒng)能夠完全取代人工評(píng)估,不會(huì)出現(xiàn)任何錯(cuò)誤B.數(shù)據(jù)的質(zhì)量和特征選擇對(duì)人工智能信用評(píng)估系統(tǒng)的準(zhǔn)確性至關(guān)重要C.人工智能信用評(píng)估系統(tǒng)只考慮客戶(hù)的財(cái)務(wù)數(shù)據(jù),不考慮其他非財(cái)務(wù)因素D.銀行不需要對(duì)人工智能信用評(píng)估系統(tǒng)的結(jié)果進(jìn)行審核和監(jiān)督5、人工智能中的弱人工智能和強(qiáng)人工智能是兩個(gè)不同的概念。假設(shè)我們?cè)谟懻撊斯ぶ悄艿陌l(fā)展階段,以下關(guān)于弱人工智能和強(qiáng)人工智能的描述,哪一項(xiàng)是正確的?()A.弱人工智能已經(jīng)能夠像人類(lèi)一樣思考和創(chuàng)造B.強(qiáng)人工智能目前已經(jīng)廣泛應(yīng)用于各個(gè)領(lǐng)域C.弱人工智能只能完成特定的任務(wù),不具備通用性D.區(qū)分弱人工智能和強(qiáng)人工智能的關(guān)鍵在于計(jì)算能力6、人工智能中的遷移學(xué)習(xí)方法可以利用已有的知識(shí)和模型來(lái)解決新的問(wèn)題。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用到小樣本的特定領(lǐng)域圖像分類(lèi)任務(wù)中。以下關(guān)于遷移學(xué)習(xí)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以將預(yù)訓(xùn)練模型的特征提取部分應(yīng)用到新任務(wù)中,并在新數(shù)據(jù)上微調(diào)B.遷移學(xué)習(xí)能夠有效解決新任務(wù)數(shù)據(jù)量不足的問(wèn)題,提高模型的泛化能力C.直接使用預(yù)訓(xùn)練模型的輸出結(jié)果,無(wú)需任何調(diào)整,就能在新任務(wù)中取得好的效果D.選擇合適的預(yù)訓(xùn)練模型和遷移策略對(duì)于遷移學(xué)習(xí)的成功至關(guān)重要7、在人工智能的圖像生成領(lǐng)域,生成對(duì)抗網(wǎng)絡(luò)(GAN)取得了令人矚目的成果。假設(shè)要生成逼真的藝術(shù)畫(huà)作,同時(shí)具有獨(dú)特的風(fēng)格和創(chuàng)造力。以下哪種改進(jìn)的GAN架構(gòu)或訓(xùn)練方法能夠更好地實(shí)現(xiàn)這一目標(biāo)?()A.條件GANB.循環(huán)GANC.自監(jiān)督GAND.以上方法結(jié)合使用8、在人工智能的模型評(píng)估中,需要選擇合適的指標(biāo)來(lái)衡量模型的性能。假設(shè)一個(gè)圖像分類(lèi)模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,正確的是:()A.準(zhǔn)確率是唯一重要的評(píng)估指標(biāo),其他指標(biāo)如召回率和F1值都不重要B.對(duì)于不平衡的數(shù)據(jù)集,準(zhǔn)確率可能會(huì)產(chǎn)生誤導(dǎo),應(yīng)該使用更合適的指標(biāo)如召回率和F1值C.模型評(píng)估指標(biāo)只與模型的架構(gòu)有關(guān),與數(shù)據(jù)分布無(wú)關(guān)D.選擇評(píng)估指標(biāo)時(shí)不需要考慮具體的應(yīng)用場(chǎng)景和需求9、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用包括作物監(jiān)測(cè)、病蟲(chóng)害預(yù)測(cè)等。假設(shè)要利用人工智能技術(shù)預(yù)測(cè)農(nóng)作物的病蟲(chóng)害發(fā)生情況,以下關(guān)于農(nóng)業(yè)領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.僅依靠氣象數(shù)據(jù)就能準(zhǔn)確預(yù)測(cè)農(nóng)作物的病蟲(chóng)害發(fā)生B.人工智能在農(nóng)業(yè)中的應(yīng)用成本過(guò)高,不具有實(shí)際推廣價(jià)值C.綜合考慮農(nóng)作物的生長(zhǎng)環(huán)境、圖像數(shù)據(jù)和歷史病蟲(chóng)害信息等,可以提高病蟲(chóng)害預(yù)測(cè)的準(zhǔn)確性D.農(nóng)業(yè)領(lǐng)域的數(shù)據(jù)質(zhì)量和多樣性對(duì)人工智能應(yīng)用的效果沒(méi)有影響10、人工智能在智能客服領(lǐng)域的應(yīng)用越來(lái)越廣泛。假設(shè)要構(gòu)建一個(gè)能夠回答用戶(hù)各種問(wèn)題的智能客服系統(tǒng),需要考慮以下幾個(gè)方面。以下關(guān)于提高回答準(zhǔn)確性的方法,哪一項(xiàng)是最重要的?()A.建立一個(gè)龐大的知識(shí)庫(kù),涵蓋各種常見(jiàn)問(wèn)題和答案B.運(yùn)用自然語(yǔ)言生成技術(shù),生成更加自然流暢的回答C.不斷收集用戶(hù)的反饋,對(duì)系統(tǒng)進(jìn)行優(yōu)化和改進(jìn)D.使用多種語(yǔ)言模型進(jìn)行融合,提高回答的多樣性11、人工智能在金融領(lǐng)域的應(yīng)用越來(lái)越廣泛,如風(fēng)險(xiǎn)評(píng)估、投資決策和欺詐檢測(cè)等。以下關(guān)于人工智能在金融領(lǐng)域應(yīng)用的描述,不準(zhǔn)確的是()A.可以通過(guò)分析大量的金融數(shù)據(jù),更準(zhǔn)確地評(píng)估風(fēng)險(xiǎn)和預(yù)測(cè)市場(chǎng)趨勢(shì)B.能夠?yàn)橥顿Y者提供個(gè)性化的投資建議,優(yōu)化投資組合C.人工智能在金融領(lǐng)域的應(yīng)用完全消除了風(fēng)險(xiǎn)和錯(cuò)誤,保障了金融交易的絕對(duì)安全D.金融機(jī)構(gòu)在采用人工智能技術(shù)時(shí),需要考慮合規(guī)性和監(jiān)管要求12、在人工智能的音樂(lè)創(chuàng)作領(lǐng)域,計(jì)算機(jī)可以生成音樂(lè)作品。假設(shè)我們要利用人工智能創(chuàng)作一首流行歌曲,以下關(guān)于人工智能音樂(lè)創(chuàng)作的描述,哪一項(xiàng)是不正確的?()A.可以模仿特定音樂(lè)風(fēng)格和作曲家的特點(diǎn)B.能夠完全替代人類(lèi)音樂(lè)家的創(chuàng)作靈感C.需要大量的音樂(lè)數(shù)據(jù)進(jìn)行訓(xùn)練D.生成的音樂(lè)可能缺乏情感和藝術(shù)表達(dá)13、在一個(gè)利用人工智能進(jìn)行自動(dòng)化文本分類(lèi)的項(xiàng)目中,例如將新聞文章分類(lèi)為不同的主題,為了提高分類(lèi)的準(zhǔn)確性,以下哪種措施可能是有效的?()A.增加訓(xùn)練數(shù)據(jù)的多樣性B.選擇更復(fù)雜的分類(lèi)算法C.對(duì)文本進(jìn)行更精細(xì)的預(yù)處理D.以上都是14、人工智能在智能推薦系統(tǒng)中的應(yīng)用越來(lái)越普遍。假設(shè)要為一個(gè)電商平臺(tái)開(kāi)發(fā)推薦系統(tǒng),以下關(guān)于考慮用戶(hù)興趣動(dòng)態(tài)變化的方法,哪一項(xiàng)是最重要的?()A.定期重新訓(xùn)練模型,以反映用戶(hù)興趣的最新變化B.只根據(jù)用戶(hù)的歷史購(gòu)買(mǎi)記錄進(jìn)行推薦,不考慮近期行為C.為用戶(hù)推薦始終不變的熱門(mén)商品,不考慮其個(gè)人興趣D.隨機(jī)推薦商品,期望能夠滿(mǎn)足用戶(hù)的動(dòng)態(tài)興趣15、人工智能在金融風(fēng)險(xiǎn)預(yù)測(cè)中具有應(yīng)用潛力。假設(shè)要預(yù)測(cè)股票市場(chǎng)的波動(dòng),以下哪種數(shù)據(jù)來(lái)源可能對(duì)預(yù)測(cè)結(jié)果的準(zhǔn)確性提升幫助最?。浚ǎ〢.公司的財(cái)務(wù)報(bào)表B.社交媒體上的輿論C.歷史天氣數(shù)據(jù)D.宏觀(guān)經(jīng)濟(jì)指標(biāo)二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)說(shuō)明人工智能在社會(huì)輿論監(jiān)測(cè)和引導(dǎo)中的方法。2、(本題5分)簡(jiǎn)述人工智能在社會(huì)創(chuàng)新生態(tài)系統(tǒng)構(gòu)建中的應(yīng)用。3、(本題5分)簡(jiǎn)述人工智能在客戶(hù)關(guān)系管理中的改進(jìn)。4、(本題5分)解釋人工智能在圖像壓縮和編碼中的技術(shù)。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用Python的TensorFlow庫(kù),構(gòu)建一個(gè)膠囊網(wǎng)絡(luò)(CapsNet)模型,對(duì)MNIST手寫(xiě)數(shù)字?jǐn)?shù)據(jù)集進(jìn)行分類(lèi)。與傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行性能比較和分析。2、(本題5分)利用Python的OpenCV庫(kù),實(shí)現(xiàn)對(duì)圖像的均值漂移聚類(lèi)。分析聚類(lèi)結(jié)果和參數(shù)的關(guān)系。3、(本題5分)借助TensorFlow構(gòu)建一個(gè)強(qiáng)化學(xué)習(xí)模型,讓智能體學(xué)習(xí)在自動(dòng)駕駛場(chǎng)景中做出決策。考慮安全性和效率。4、(本題5分)使用Python中的PyTorch框架,構(gòu)建一個(gè)基于Transformer架構(gòu)的問(wèn)答系統(tǒng)模型,回答各種問(wèn)題。5、(本題5分)運(yùn)用Python中的Keras庫(kù),搭建一個(gè)循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)模型,對(duì)股票價(jià)格時(shí)間序列數(shù)據(jù)進(jìn)行預(yù)測(cè)。使用合適的損失函數(shù)和評(píng)估指標(biāo),對(duì)模型進(jìn)行訓(xùn)練和評(píng)估,并對(duì)未來(lái)一段時(shí)間的股票價(jià)格進(jìn)行預(yù)測(cè)。四、案例分析題(本大題共4個(gè)小題,共40分)1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論