下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE1-課時(shí)作業(yè)18拋物線及其標(biāo)準(zhǔn)方程學(xué)問點(diǎn)一拋物線的定義1.已知?jiǎng)狱c(diǎn)M的坐標(biāo)滿意方程5eq\r(x2+y2)=|3x+4y-12|,則動(dòng)點(diǎn)M的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.圓答案C解析方程5eq\r(x2+y2)=|3x+4y-12|可化為eq\r(x2+y2)=eq\f(|3x+4y-12|,5),它表示點(diǎn)M到坐標(biāo)原點(diǎn)O的距離等于它到直線3x+4y-12=0的距離,由拋物線的定義可知,動(dòng)點(diǎn)M的軌跡是拋物線.故選C.2.給出下列命題:①到定點(diǎn)F(-1,0)的距離和定直線x=1的距離相等的動(dòng)點(diǎn)P的軌跡為拋物線;②到定點(diǎn)F(2,1)的距離和到定直線3x-2y-4=0的距離相等的動(dòng)點(diǎn)P的軌跡為拋物線;③拋物線的焦點(diǎn)肯定在y軸上.其中假命題是________(填序號(hào)).答案②③解析由拋物線的定義,知命題①為真命題;因?yàn)槎c(diǎn)F(2,1)在定直線3x-2y-4=0上,可知?jiǎng)狱c(diǎn)P的軌跡為一條直線,所以命題②為假命題;因?yàn)閽佄锞€的焦點(diǎn)可以隨建立坐標(biāo)系的方式不同而不同,因此可以在x軸上,所以命題③為假命題.3.平面上動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1,求動(dòng)點(diǎn)P的軌跡方程.解解法一:設(shè)點(diǎn)P的坐標(biāo)為(x,y),則eq\r(x-12+y2)=|x|+1.兩邊平方并化簡(jiǎn),得y2=2x+2|x|,所以y2=eq\b\lc\{\rc\(\a\vs4\al\co1(4x,x≥0,,0,x<0.))于是動(dòng)點(diǎn)P的軌跡方程為y2=4x(x≥0)或y=0(x<0).解法二:由于點(diǎn)F(1,0)到y(tǒng)軸的距離為1,所以當(dāng)x<0時(shí),射線y=0上的點(diǎn)滿意題意;當(dāng)x≥0時(shí),已知條件等價(jià)于點(diǎn)P到點(diǎn)F(1,0)的距離與到其直線x=-1的距離相等,所以點(diǎn)P的軌跡是以點(diǎn)F為焦點(diǎn),直線x=-1為準(zhǔn)線的拋物線,方程為y2=4x.于是動(dòng)點(diǎn)P的軌跡方程為y2=4x(x≥0)或y=0(x<0).學(xué)問點(diǎn)二拋物線的標(biāo)準(zhǔn)方程4.拋物線y=2x2的焦點(diǎn)坐標(biāo)是________,準(zhǔn)線方程為________.答案eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,8)))y=-eq\f(1,8)解析拋物線方程即x2=eq\f(1,2)y,可知焦點(diǎn)在y軸上,且eq\f(p,2)=eq\f(1,8),所以焦點(diǎn)坐標(biāo)是eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,8))),準(zhǔn)線方程為y=-eq\f(1,8).5.依據(jù)下列條件寫出拋物線的標(biāo)準(zhǔn)方程:(1)準(zhǔn)線方程為y=-1;(2)焦點(diǎn)在x軸的正半軸上,焦點(diǎn)到準(zhǔn)線的距離是3.解(1)由準(zhǔn)線方程為y=-1知拋物線焦點(diǎn)在y軸正半軸上,且eq\f(p,2)=1,則p=2.故拋物線的標(biāo)準(zhǔn)方程為x2=4y.(2)設(shè)焦點(diǎn)在x軸的正半軸上的拋物線的標(biāo)準(zhǔn)方程為y2=2px(p>0),則焦點(diǎn)坐標(biāo)為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(p,2),0)),準(zhǔn)線為x=-eq\f(p,2),則焦點(diǎn)到準(zhǔn)線的距離是p=3,因此所求的拋物線的標(biāo)準(zhǔn)方程是y2=6x.一、選擇題1.頂點(diǎn)在原點(diǎn),且過點(diǎn)(-4,4)的拋物線的標(biāo)準(zhǔn)方程是()A.y2=-4x B.x2=4yC.y2=-4x或x2=4y D.y2=4x或x2=-4y答案C解析設(shè)拋物線方程為y2=-2p1x或x2=2p2y,把(-4,4)代入得16=8p1或16=8p2,即p1=2或p2=2.故拋物線的標(biāo)準(zhǔn)方程為y2=-4x或x2=4y.故選C.2.已知拋物線y2=2px(p>0)的準(zhǔn)線與圓x2+y2-6x-7=0相切,則p的值為()A.eq\f(1,2) B.1C.2 D.4答案C解析由拋物線的標(biāo)準(zhǔn)方程得準(zhǔn)線方程為x=-eq\f(p,2).由x2+y2-6x-7=0得(x-3)2+y2=16.∵準(zhǔn)線與圓相切,∴3+eq\f(p,2)=4,∴p=2.故選C.3.設(shè)F為拋物線C:y2=4x的焦點(diǎn),曲線y=eq\f(k,x)(k>0)與C交于點(diǎn)P,PF⊥x軸,則k=()A.eq\f(1,2) B.1C.eq\f(3,2) D.2答案D解析易知拋物線的焦點(diǎn)為F(1,0),設(shè)P(xP,yP),由PF⊥x軸可得xP=1,代入拋物線方程得yP=2,(-2舍去),把P(1,2)代入曲線y=eq\f(k,x)(k>0)得k=2.故選D.4.若動(dòng)圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動(dòng)圓圓心的軌跡方程是()A.y2=8x B.y2=-8xC.y2=4x D.y2=-4x答案A解析設(shè)動(dòng)圓的半徑為r,圓心為O′(x,y),且O′到點(diǎn)(2,0)的距離為r+1,O′到直線x=-1的距離為r,所以O(shè)′到(2,0)的距離與到直線x=-2的距離相等,由拋物線的定義,動(dòng)圓圓心的軌跡方程為y2=8x.故選A.5.已知拋物線C:y2=x的焦點(diǎn)為F,A(x0,y0)是C上一點(diǎn),|AF|=eq\f(5,4)x0,則x0等于()A.4 B.2C.1 D.8答案C解析如圖,F(xiàn)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4),0)),過A作AA′⊥準(zhǔn)線l,∴|AF|=|AA′|,∴eq\f(5,4)x0=x0+eq\f(p,2)=x0+eq\f(1,4),∴x0=1.故選C.二、填空題6.若拋物線y2=4x上的點(diǎn)M到焦點(diǎn)的距離為10,則M到y(tǒng)軸的距離是________.答案9解析由于拋物線y2=4x的焦點(diǎn)為F(1,0),準(zhǔn)線為x=-1,設(shè)點(diǎn)M的坐標(biāo)為(x,y),則x+1=10,所以x=9.故M到y(tǒng)軸的距離是9.7.在平面直角坐標(biāo)系xOy中,有肯定點(diǎn)A(2,1),若線段OA的垂直平分線過拋物線y2=2px(p>0)的焦點(diǎn),則該拋物線的準(zhǔn)線方程是__________.答案x=-eq\f(5,4)解析OA的垂直平分線方程為y=-2x+eq\f(5,2),令y=0,得x=eq\f(5,4),∴焦點(diǎn)F的坐標(biāo)為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,4),0)).∴拋物線方程為y2=5x,其準(zhǔn)線方程為x=-eq\f(5,4).8.下圖是拋物線形拱橋,當(dāng)水面在l時(shí),拱頂離水面2m,水面寬4m.水位下降1m后,水面寬________m.答案2eq\r(6)解析以拋物線的頂點(diǎn)為原點(diǎn),對(duì)稱軸為y軸建立直角坐標(biāo)系,設(shè)拋物線的方程為x2=-2py,則點(diǎn)(2,-2)在拋物線上,代入可得p=1,所以x2=-2y.當(dāng)y=-3時(shí),x2=6,所以水面寬為2eq\r(6)m.三、解答題9.設(shè)拋物線y2=mx的準(zhǔn)線與直線x=1的距離為3,求拋物線的方程.解當(dāng)m>0時(shí),準(zhǔn)線方程為x=-eq\f(m,4),由條件知1-eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(m,4)))=3,所以m=8.此時(shí)拋物線方程為y2=8x;當(dāng)m<0時(shí),準(zhǔn)線方程為x=-eq\f(m,4),由條件知-eq\f(m,4)-1=3,所以m=-16,此時(shí)拋物線方程為y2=-16x.所以所求拋物線方程為y2=8x或y2=-16x.10.設(shè)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn).(1)若點(diǎn)P到直線x=-1的距離為d,A(-1,1),求|PA|+d的最小值;(2)若B(3,2),求|PB|+|PF|的最小值.解(1)依題意,拋物線的焦點(diǎn)為F(1,0),準(zhǔn)線方程為x=-1.由拋物線的定義,知|PF|=d,于是問題轉(zhuǎn)化為求|PA|+|PF|的最小值.如圖,連接AF,交拋物線于點(diǎn)P,則最小值為eq\r(22+12)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 32150-2025工業(yè)企業(yè)溫室氣體排放核算和報(bào)告通則
- 四川省涼山州2025-2026學(xué)年八年級(jí)上學(xué)期期末考試物理試題(含答案)
- 養(yǎng)老院入住老人活動(dòng)組織與實(shí)施制度
- 企業(yè)員工培訓(xùn)與職業(yè)發(fā)展目標(biāo)制度
- 老年終末期尿失禁護(hù)理方案評(píng)價(jià)
- 激勵(lì)數(shù)字技術(shù)研發(fā)投入機(jī)制建設(shè)
- 2025年湖南懷化迎賓館招聘筆試真題
- 井下電泵作業(yè)工崗前崗中技能考核試卷含答案
- 齒軌車司機(jī)安全意識(shí)強(qiáng)化模擬考核試卷含答案
- 膠狀化妝品制造工安全意識(shí)強(qiáng)化考核試卷含答案
- DB21-T 4279-2025 黑果腺肋花楸農(nóng)業(yè)氣象服務(wù)技術(shù)規(guī)程
- 2026年上海高考英語(yǔ)真題試卷+解析及答案
- 2024-2025學(xué)年湖北省咸寧市高二生物學(xué)上冊(cè)期末達(dá)標(biāo)檢測(cè)試卷及答案
- 初會(huì)經(jīng)濟(jì)法真題
- 池塘承包權(quán)合同
- JTG F40-2004 公路瀝青路面施工技術(shù)規(guī)范
- 三片飲料罐培訓(xùn)
- 副園長(zhǎng)個(gè)人發(fā)展規(guī)劃
- 第九屆、第十屆大唐杯本科AB組考試真總題庫(kù)(含答案)
- 統(tǒng)編部編版九年級(jí)下冊(cè)歷史全冊(cè)教案
- 商業(yè)地產(chǎn)策劃方案+商業(yè)地產(chǎn)策劃方案基本流程及-商業(yè)市場(chǎng)調(diào)查報(bào)告(購(gòu)物中心)
評(píng)論
0/150
提交評(píng)論