重慶市開(kāi)州區(qū)鎮(zhèn)東初級(jí)中學(xué)2024-2025學(xué)年初三一輪測(cè)試數(shù)學(xué)試題含解析_第1頁(yè)
重慶市開(kāi)州區(qū)鎮(zhèn)東初級(jí)中學(xué)2024-2025學(xué)年初三一輪測(cè)試數(shù)學(xué)試題含解析_第2頁(yè)
重慶市開(kāi)州區(qū)鎮(zhèn)東初級(jí)中學(xué)2024-2025學(xué)年初三一輪測(cè)試數(shù)學(xué)試題含解析_第3頁(yè)
重慶市開(kāi)州區(qū)鎮(zhèn)東初級(jí)中學(xué)2024-2025學(xué)年初三一輪測(cè)試數(shù)學(xué)試題含解析_第4頁(yè)
重慶市開(kāi)州區(qū)鎮(zhèn)東初級(jí)中學(xué)2024-2025學(xué)年初三一輪測(cè)試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶市開(kāi)州區(qū)鎮(zhèn)東初級(jí)中學(xué)2024-2025學(xué)年初三一輪測(cè)試數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.一個(gè)關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥32.下列四個(gè)幾何體,正視圖與其它三個(gè)不同的幾何體是()A. B.C. D.3.二次函數(shù)y=ax2+bx+c的圖象在平面直角坐標(biāo)系中的位置如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標(biāo)系中的圖象可能是()A. B. C. D.4.在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).對(duì)于一條直線,當(dāng)它與一個(gè)圓的公共點(diǎn)都是整點(diǎn)時(shí),我們把這條直線稱為這個(gè)圓的“整點(diǎn)直線”.已知⊙O是以原點(diǎn)為圓心,半徑為圓,則⊙O的“整點(diǎn)直線”共有()條A.7 B.8 C.9 D.105.如圖,點(diǎn)P是∠AOB外的一點(diǎn),點(diǎn)M,N分別是∠AOB兩邊上的點(diǎn),點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)Q恰好落在線段MN上,點(diǎn)P關(guān)于OB的對(duì)稱點(diǎn)R落在MN的延長(zhǎng)線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長(zhǎng)為()A.4.5cm B.5.5cm C.6.5cm D.7cm6.下列命題是真命題的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共頂點(diǎn)的兩個(gè)角是對(duì)頂角 D.等腰三角形兩底角相等7.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π8.下列命題中,錯(cuò)誤的是()A.三角形的兩邊之和大于第三邊B.三角形的外角和等于360°C.等邊三角形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形D.三角形的一條中線能將三角形分成面積相等的兩部分9.已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°10.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個(gè)數(shù)是()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.2011年,我國(guó)汽車銷量超過(guò)了18500000輛,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為▲輛.12.在如圖的正方形方格紙中,每個(gè)小的四邊形都是相同的正方形,A,B,C,D都在格點(diǎn)處,AB與CD相交于O,則tan∠BOD的值等于__________.13.將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板一條直角邊在同一條直線上,則∠1的度數(shù)為_(kāi)_________14.如圖,AB=AC,要使△ABE≌△ACD,應(yīng)添加的條件是(添加一個(gè)條件即可).15.如圖,半圓O的直徑AB=2,弦CD∥AB,∠COD=90°,則圖中陰影部分的面積為_(kāi)____.16.如圖,拋物線交軸于,兩點(diǎn),交軸于點(diǎn),點(diǎn)關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為,點(diǎn),分別在軸和軸上,則四邊形周長(zhǎng)的最小值為_(kāi)_________.17.分式方程+=1的解為_(kāi)_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=3cm,BC=5cm,AE=AB,點(diǎn)P從B點(diǎn)出發(fā),以1cm/s的速度沿BC→CD→DA運(yùn)動(dòng)至A點(diǎn)停止,則從運(yùn)動(dòng)開(kāi)始經(jīng)過(guò)多少時(shí)間,△BEP為等腰三角形.19.(5分)如圖所示,在中,,(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使;(不寫作法,保留作圖痕跡)(2)連接AP當(dāng)為多少度時(shí),AP平分.20.(8分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC,垂足為E.(1)證明:DE為⊙O的切線;(2)連接DC,若BC=4,求弧DC與弦DC所圍成的圖形的面積.21.(10分)如圖,直角坐標(biāo)系中,⊙M經(jīng)過(guò)原點(diǎn)O(0,0),點(diǎn)A(,0)與點(diǎn)B(0,﹣1),點(diǎn)D在劣弧OA上,連接BD交x軸于點(diǎn)C,且∠COD=∠CBO.(1)請(qǐng)直接寫出⊙M的直徑,并求證BD平分∠ABO;(2)在線段BD的延長(zhǎng)線上尋找一點(diǎn)E,使得直線AE恰好與⊙M相切,求此時(shí)點(diǎn)E的坐標(biāo).22.(10分)已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),點(diǎn)F、G是邊AC的三等分點(diǎn),DF、EG的延長(zhǎng)線相交于點(diǎn)H,連接HA、HC.(1)求證:四邊形FBGH是菱形;(2)求證:四邊形ABCH是正方形.23.(12分)如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過(guò)點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.求∠CDE的度數(shù);求證:DF是⊙O的切線;若AC=DE,求tan∠ABD的值.24.(14分)已知關(guān)于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負(fù)數(shù).(1)求m的取值范圍;(2)若方程②有兩個(gè)整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】試題解析:一個(gè)關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點(diǎn):在數(shù)軸上表示不等式的解集.2、C【解析】

根據(jù)幾何體的三視圖畫(huà)法先畫(huà)出物體的正視圖再解答.【詳解】解:A、B、D三個(gè)幾何體的主視圖是由左上一個(gè)正方形、下方兩個(gè)正方形構(gòu)成的,而C選項(xiàng)的幾何體是由上方2個(gè)正方形、下方2個(gè)正方形構(gòu)成的,故選:C.此題重點(diǎn)考查學(xué)生對(duì)幾何體三視圖的理解,掌握幾何體的主視圖是解題的關(guān)鍵.3、C【解析】試題分析:∵二次函數(shù)圖象開(kāi)口方向向下,∴a<0,∵對(duì)稱軸為直線>0,∴b>0,∵與y軸的正半軸相交,∴c>0,∴的圖象經(jīng)過(guò)第一、二、四象限,反比例函數(shù)圖象在第一三象限,只有C選項(xiàng)圖象符合.故選C.考點(diǎn):1.二次函數(shù)的圖象;2.一次函數(shù)的圖象;3.反比例函數(shù)的圖象.4、D【解析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點(diǎn)為(2,2)、(2,-2),(-2,-2),(-2,2)這四個(gè)點(diǎn),經(jīng)過(guò)任意兩點(diǎn)的“整點(diǎn)直線”有6條,經(jīng)過(guò)其中的任意一點(diǎn)且圓相切的“整點(diǎn)直線”有4條,則合計(jì)共有10條.5、A【解析】試題分析:利用軸對(duì)稱圖形的性質(zhì)得出PM=MQ,PN=NR,進(jìn)而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長(zhǎng)RN+NQ=3+2.5=3.5(cm).故選A.考點(diǎn):軸對(duì)稱圖形的性質(zhì)6、D【解析】

解:A、如果a+b=0,那么a=b=0,或a=﹣b,錯(cuò)誤,為假命題;B、=4的平方根是±2,錯(cuò)誤,為假命題;C、有公共頂點(diǎn)且相等的兩個(gè)角是對(duì)頂角,錯(cuò)誤,為假命題;D、等腰三角形兩底角相等,正確,為真命題;故選D.7、D【解析】

根據(jù)三視圖知該幾何體是一個(gè)半徑為2、高為4的圓柱體的縱向一半,據(jù)此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是根據(jù)三視圖得出幾何體的形狀及圓柱體的有關(guān)計(jì)算.8、C【解析】

根據(jù)三角形的性質(zhì)即可作出判斷.【詳解】解:A、正確,符合三角形三邊關(guān)系;B、正確;三角形外角和定理;C、錯(cuò)誤,等邊三角形既是軸對(duì)稱圖形,不是中心對(duì)稱圖形;D、三角形的一條中線能將三角形分成面積相等的兩部分,正確.故選:C.本題考查了命題真假的判斷,屬于基礎(chǔ)題.根據(jù)定義:符合事實(shí)真理的判斷是真命題,不符合事實(shí)真理的判斷是假命題,不難選出正確項(xiàng).9、D【解析】【分析】由圖可知,OA=10,OD=1.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【詳解】由圖可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所對(duì)的圓周角的度數(shù)是60°或120°,故選D.【點(diǎn)睛】本題考查了圓周角定理、圓內(nèi)接四邊形的對(duì)角互補(bǔ)、解直角三角形的應(yīng)用等,正確畫(huà)出圖形,熟練應(yīng)用相關(guān)知識(shí)是解題的關(guān)鍵.10、C【解析】分析:過(guò)O1、O2作直線,以O(shè)1O2上一點(diǎn)為圓心作一半徑為2的圓,將這個(gè)圓從左側(cè)與圓O1、圓O2同時(shí)外切的位置(即圓O3)開(kāi)始向右平移,觀察圖形,并結(jié)合三個(gè)圓的半徑進(jìn)行分析即可得到符合要求的圓的個(gè)數(shù).詳解:如下圖,(1)當(dāng)半徑為2的圓同時(shí)和圓O1、圓O2外切時(shí),該圓在圓O3的位置;(2)當(dāng)半徑為2的圓和圓O1、圓O2都內(nèi)切時(shí),該圓在圓O4的位置;(3)當(dāng)半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時(shí),該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個(gè).故選C.點(diǎn)睛:保持圓O1、圓O2的位置不動(dòng),以直線O1O2上一個(gè)點(diǎn)為圓心作一個(gè)半徑為2的圓,觀察其從左至右平移過(guò)程中與圓O1、圓O2的位置關(guān)系,結(jié)合三個(gè)圓的半徑大小即可得到本題所求答案.二、填空題(共7小題,每小題3分,滿分21分)11、2.85×2.【解析】

根據(jù)科學(xué)記數(shù)法的定義,科學(xué)記數(shù)法的表示形式為a×20n,其中2≤|a|<20,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.在確定n的值時(shí),看該數(shù)是大于或等于2還是小于2.當(dāng)該數(shù)大于或等于2時(shí),n為它的整數(shù)位數(shù)減2;當(dāng)該數(shù)小于2時(shí),-n為它第一個(gè)有效數(shù)字前0的個(gè)數(shù)(含小數(shù)點(diǎn)前的2個(gè)0).【詳解】解:28500000一共8位,從而28500000=2.85×2.12、3【解析】試題解析:平移CD到C′D′交AB于O′,如圖所示,則∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,設(shè)每個(gè)小正方形的邊長(zhǎng)為a,則O′B=,O′D′=,BD′=3a,作BE⊥O′D′于點(diǎn)E,則BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考點(diǎn):解直角三角形.13、75°【解析】

先根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行得出AC∥DF,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等得出∠2=∠A=45°,然后根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠1的度數(shù).【詳解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案為:75°.本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì),求出∠2=∠A=45°是解題的關(guān)鍵.14、AE=AD(答案不唯一).【解析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,則可以添加AE=AD,利用SAS來(lái)判定其全等;或添加∠B=∠C,利用ASA來(lái)判定其全等;或添加∠AEB=∠ADC,利用AAS來(lái)判定其全等.等(答案不唯一).15、【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S陰影=S扇形COD==.故答案為.16、【解析】

根據(jù)拋物線解析式求得點(diǎn)D(1,4)、點(diǎn)E(2,3),作點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)D′(﹣1,4)、作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′(2,﹣3),從而得到四邊形EDFG的周長(zhǎng)=DE+DF+FG+GE=DE+D′F+FG+GE′,當(dāng)點(diǎn)D′、F、G、E′四點(diǎn)共線時(shí),周長(zhǎng)最短,據(jù)此根據(jù)勾股定理可得答案.【詳解】如圖,在y=﹣x2+2x+3中,當(dāng)x=0時(shí),y=3,即點(diǎn)C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對(duì)稱軸為x=1,頂點(diǎn)D(1,4),則點(diǎn)C關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)E的坐標(biāo)為(2,3),作點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)D′(﹣1,4),作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′(2,﹣3),連結(jié)D′、E′,D′E′與x軸的交點(diǎn)G、與y軸的交點(diǎn)F即為使四邊形EDFG的周長(zhǎng)最小的點(diǎn),四邊形EDFG的周長(zhǎng)=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長(zhǎng)的最小值是.本題主要考查拋物線的性質(zhì)以及兩點(diǎn)間的距離公式,解題的關(guān)鍵是熟練掌握拋物線的性質(zhì),利用數(shù)形結(jié)合得出答案.17、【解析】

根據(jù)解分式方程的步驟,即可解答.【詳解】方程兩邊都乘以,得:,解得:,檢驗(yàn):當(dāng)時(shí),,所以分式方程的解為,故答案為.考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解解分式方程一定注意要驗(yàn)根.三、解答題(共7小題,滿分69分)18、(1)證明見(jiàn)解析;(2)從運(yùn)動(dòng)開(kāi)始經(jīng)過(guò)2s或s或s或s時(shí),△BEP為等腰三角形.【解析】

(1)根據(jù)內(nèi)錯(cuò)角相等,得到兩邊平行,然后再根據(jù)三角形內(nèi)角和等于180度得到另一對(duì)內(nèi)錯(cuò)角相等,從而證得原四邊形是平行四邊形;(2)分別考慮P在BC和DA上的情況求出t的值.【詳解】解:(1)∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四邊形ABCD是平行四邊形.(2)∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD間的最短距離是4cm,∵AB=3cm,AE=AB,∴AE=1cm,BE=2cm,設(shè)經(jīng)過(guò)ts時(shí),△BEP是等腰三角形,當(dāng)P在BC上時(shí),①BP=EB=2cm,t=2時(shí),△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=BE=1cm∵cos∠ABC=,∴BP=cm,t=時(shí),△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,則BP=2BN,∴cosB=,∴,BN=cm,∴BP=,∴t=時(shí),△BEP是等腰三角形;當(dāng)P在CD上不能得出等腰三角形,∵AB、CD間的最短距離是4cm,CA⊥AB,CA=4cm,當(dāng)P在AD上時(shí),只能BE=EP=2cm,過(guò)P作PQ⊥BA于Q,∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,設(shè)PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴x=,AP=5x=cm,∴t=5+5+3﹣=,答:從運(yùn)動(dòng)開(kāi)始經(jīng)過(guò)2s或s或s或s時(shí),△BEP為等腰三角形.本題主要考查平行四邊形的判定定理及一元二次方程的解法,要求學(xué)生能夠熟練利用邊角關(guān)系解三角形.19、(1)詳見(jiàn)解析;(2)30°.【解析】

(1)根據(jù)線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據(jù)等腰三角形的性質(zhì)可得,由角平分線的定義可得,根據(jù)直角三角形兩銳角互余的性質(zhì)即可得∠B的度數(shù),可得答案.【詳解】(1)如圖所示:分別以A、B為圓心,大于AB長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)E、F,作直線EF,交BC于點(diǎn)P,∵EF為AB的垂直平分線,∴PA=PB,∴點(diǎn)P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當(dāng)時(shí),AP平分.本題考查尺規(guī)作圖,考查了垂直平分線的性質(zhì)、直角三角形兩銳角互余的性質(zhì)及等腰三角形的性質(zhì),線段垂直平分線上的點(diǎn)到線段兩端的距離相等;熟練掌握垂直平分線的性質(zhì)是解題關(guān)鍵.20、(1)詳見(jiàn)解析;(2).【解析】

(1)連接OD,由平行線的判定定理可得OD∥AC,利用平行線的性質(zhì)得∠ODE=∠DEA=90°,可得DE為⊙O的切線;

(2)連接CD,求弧DC與弦DC所圍成的圖形的面積利用扇形DOC面積-三角形DOC的面積計(jì)算即可.【詳解】解:(1)證明:連接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE為⊙O的切線;(2)連接CD,∵∠A=30°,AC=BC,∴∠BCA=120°,∵BC為直徑,∴∠ADC=90°,∴CD⊥AB,∴∠BCD=60°,∵OD=OC,∴∠DOC=60°,∴△DOC是等邊三角形,∵BC=4,∴OC=DC=2,∴S△DOC=DC×=,∴弧DC與弦DC所圍成的圖形的面積=﹣=﹣.本題考查的知識(shí)點(diǎn)是等腰三角形的性質(zhì)、切線的判定與性質(zhì)以及扇形面積的計(jì)算,解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì)、切線的判定與性質(zhì)以及扇形面積的計(jì)算.21、(1)詳見(jiàn)解析;(2)(,1).【解析】

(1)根據(jù)勾股定理可得AB的長(zhǎng),即⊙M的直徑,根據(jù)同弧所對(duì)的圓周角可得BD平分∠ABO;(2)作輔助構(gòu)建切線AE,根據(jù)特殊的三角函數(shù)值可得∠OAB=30°,分別計(jì)算EF和AF的長(zhǎng),可得點(diǎn)E的坐標(biāo).【詳解】(1)∵點(diǎn)A(,0)與點(diǎn)B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直徑,∴⊙M的直徑為2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如圖,過(guò)點(diǎn)A作AE⊥AB于E,交BD的延長(zhǎng)線于點(diǎn)E,過(guò)E作EF⊥OA于F,即AE是切線,∵在Rt△ACB中,tan∠OAB=,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB?tan30°=1×,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等邊三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴點(diǎn)E的坐標(biāo)為(,1).此題屬于圓的綜合題,考查了勾股定理、圓周角定理、等邊三角形的判定與性質(zhì)以及三角函數(shù)等知識(shí).注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.22、(1)見(jiàn)解析(2)見(jiàn)解析【解析】

(1)由三角形中位線知識(shí)可得DF∥BG,GH∥BF,根據(jù)菱形的判定的判定可得四邊形FBGH是菱形;

(2)連結(jié)BH,交AC于點(diǎn)O,利用平行四邊形的對(duì)角線互相平分可得OB=OH,OF=OG,又AF=CG,所以O(shè)A=OC.再根據(jù)對(duì)角線互相垂直平分的平行四邊形得證四邊形ABCH是菱形,再根據(jù)一組鄰邊相等的菱形即可求解.【詳解】(1)∵點(diǎn)F、G是邊AC的三等分點(diǎn),

∴AF=FG=GC.

又∵點(diǎn)D是邊AB的中點(diǎn),

∴DH∥BG.

同理:EH∥BF.

∴四邊形FBGH是平行四邊形,

連結(jié)BH,交AC于點(diǎn)O,

∴OF=OG,

∴AO=CO,

∵AB=BC,

∴BH⊥FG,

∴四邊形FBGH是菱形;

(2)∵四邊形FBGH是平行四邊形,

∴BO=HO,F(xiàn)O=GO.

又∵AF=FG=GC,

∴AF+FO=GC+GO,即:AO=CO.

∴四邊形ABCH是平行四邊形.

∵AC⊥BH,AB=BC,

∴四邊形ABCH是正方形.本題考查正方形的判定,菱形的判定和性質(zhì),三角形的中位線,熟練掌握正方形的判定和性質(zhì)是解題的關(guān)鍵.23、(1)90°;(1)證明見(jiàn)解析;(3)1.【解析】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論