版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆云南省紅河州彌勒市達標名校中考數(shù)學對點突破模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2.一次函數(shù)滿足,且y隨x的增大而減小,則此函數(shù)的圖像一定不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若圓錐的軸截面為等邊三角形,則稱此圓錐為正圓錐,則正圓錐側(cè)面展開圖的圓心角是()A.90°B.120°C.150°D.180°4.2022年冬奧會,北京、延慶、張家口三個賽區(qū)共25個場館,北京共12個,其中11個為2008年奧運會遺留場館,唯一一個新建的場館是國家速滑館,可容納12000人觀賽,將12000用科學記數(shù)法表示應為()A.12×10 B.1.2×10 C.1.2×10 D.0.12×105.已知⊙O的半徑為3,圓心O到直線L的距離為2,則直線L與⊙O的位置關(guān)系是()A.相交 B.相切 C.相離 D.不能確定6.下列各數(shù)中,比﹣1大1的是()A.0B.1C.2D.﹣37.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數(shù)是()A.25° B.35° C.45° D.65°8.在實數(shù)﹣,0.21,,,,0.20202中,無理數(shù)的個數(shù)為()A.1 B.2 C.3 D.49.如圖,∠AOB=45°,OC是∠AOB的角平分線,PM⊥OB,垂足為點M,PN∥OB,PN與OA相交于點N,那么的值等于()A. B. C. D.10.已知反比例函數(shù),下列結(jié)論不正確的是()A.圖象經(jīng)過點(﹣2,1) B.圖象在第二、四象限C.當x<0時,y隨著x的增大而增大 D.當x>﹣1時,y>211.觀察下列圖形,則第n個圖形中三角形的個數(shù)是()A.2n+2 B.4n+4 C.4n﹣4 D.4n12.2019年4月份,某市市區(qū)一周空氣質(zhì)量報告中某項污染指數(shù)的數(shù)據(jù)是:31,35,31,34,30,32,31,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.32,31 B.31,32 C.31,31 D.32,35二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知甲、乙兩組數(shù)據(jù)的折線圖如圖,設(shè)甲、乙兩組數(shù)據(jù)的方差分別為S甲2、S乙2,則S甲2__S乙2(填“>”、“=”、“<”)14.某種商品兩次降價后,每件售價從原來100元降到81元,平均每次降價的百分率是__________.15.與是位似圖形,且對應面積比為4:9,則與的位似比為______.16.如圖,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.17.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.18.如圖,△ABC內(nèi)接于⊙O,DA、DC分別切⊙O于A、C兩點,∠ABC=114°,則∠ADC的度數(shù)為_______°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.20.(6分)((1)計算:;(2)先化簡,再求值:,其中a=.21.(6分)在△ABC中,,以邊AB上一點O為圓心,OA為半徑的圈與BC相切于點D,分別交AB,AC于點E,F(xiàn)如圖①,連接AD,若,求∠B的大??;如圖②,若點F為的中點,的半徑為2,求AB的長.22.(8分)如圖,B、E、C、F在同一直線上,AB=DE,BE=CF,∠B=∠DEF,求證:AC=DF.23.(8分)如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.求證:△BDE≌△BCE;試判斷四邊形ABED的形狀,并說明理由.24.(10分)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠1.(1)若CE=1,求BC的長;(1)求證:AM=DF+ME.25.(10分)計算:﹣﹣|4sin30°﹣|+(﹣)﹣126.(12分)(2016湖南省株洲市)某市對初二綜合素質(zhì)測評中的審美與藝術(shù)進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?(2)某同學測試成績?yōu)?0分,他的綜合評價得分有可能達到A等嗎?為什么?(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?27.(12分)解分式方程:.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.2、C【解析】
y隨x的增大而減小,可得一次函數(shù)y=kx+b單調(diào)遞減,k<0,又滿足kb<0,可得b>0,由此即可得出答案.【詳解】∵y隨x的增大而減小,∴一次函數(shù)y=kx+b單調(diào)遞減,∴k<0,∵kb<0,∴b>0,∴直線經(jīng)過第二、一、四象限,不經(jīng)過第三象限,故選C.【點睛】本題考查了一次函數(shù)的圖象和性質(zhì),熟練掌握一次函數(shù)y=kx+b(k≠0,k、b是常數(shù))的圖象和性質(zhì)是解題的關(guān)鍵.3、D【解析】試題分析:設(shè)正圓錐的底面半徑是r,則母線長是2r,底面周長是2πr,設(shè)正圓錐的側(cè)面展開圖的圓心角是n°,則2r·πr180考點:圓錐的計算.4、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】數(shù)據(jù)12000用科學記數(shù)法表示為1.2×104,故選:B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.5、A【解析】試題分析:根據(jù)圓O的半徑和,圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.解:∵⊙O的半徑為3,圓心O到直線L的距離為2,∵3>2,即:d<r,∴直線L與⊙O的位置關(guān)系是相交.故選A.考點:直線與圓的位置關(guān)系.6、A【解析】
用-1加上1,求出比-1大1的是多少即可.【詳解】∵-1+1=1,∴比-1大1的是1.故選:A.【點睛】本題考查了有理數(shù)加法的運算,解題的關(guān)鍵是要熟練掌握:“先符號,后絕對值”.7、A【解析】
如圖,過點C作CD∥a,再由平行線的性質(zhì)即可得出結(jié)論.【詳解】如圖,過點C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點睛】本題考查了平行線的性質(zhì)與判定,根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關(guān)鍵.8、C【解析】在實數(shù)﹣,0.21,,,,0.20202中,根據(jù)無理數(shù)的定義可得其中無理數(shù)有﹣,,,共三個.故選C.9、B【解析】
過點P作PE⊥OA于點E,根據(jù)角平分線上的點到角的兩邊的距離相等可得PE=PM,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠POM=∠OPN,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠PNE=∠AOB,再根據(jù)直角三角形解答.【詳解】如圖,過點P作PE⊥OA于點E,∵OP是∠AOB的平分線,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴=.故選:B.【點睛】本題考查了角平分線上的點到角的兩邊距離相等的性質(zhì),直角三角形的性質(zhì),以及三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.10、D【解析】
A選項:把(-2,1)代入解析式得:左邊=右邊,故本選項正確;
B選項:因為-2<0,圖象在第二、四象限,故本選項正確;
C選項:當x<0,且k<0,y隨x的增大而增大,故本選項正確;
D選項:當x>0時,y<0,故本選項錯誤.
故選D.11、D【解析】試題分析:由已知的三個圖可得到一般的規(guī)律,即第n個圖形中三角形的個數(shù)是4n,根據(jù)一般規(guī)律解題即可.解:根據(jù)給出的3個圖形可以知道:第1個圖形中三角形的個數(shù)是4,第2個圖形中三角形的個數(shù)是8,第3個圖形中三角形的個數(shù)是12,從而得出一般的規(guī)律,第n個圖形中三角形的個數(shù)是4n.故選D.考點:規(guī)律型:圖形的變化類.12、C【解析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個.解答:解:從小到大排列此數(shù)據(jù)為:30、1、1、1、32、34、35,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、>【解析】
要比較甲、乙方差的大小,就需要求出甲、乙的方差;首先根據(jù)折線統(tǒng)計圖結(jié)合根據(jù)平均數(shù)的計算公式求出這兩組數(shù)據(jù)的平均數(shù);接下來根據(jù)方差的公式求出甲、乙兩個樣本的方差,然后比較即可解答題目.【詳解】甲組的平均數(shù)為:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙組的平均數(shù)為:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案為:>.【點睛】本題考查的知識點是方差,算術(shù)平均數(shù),折線統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握方差,算術(shù)平均數(shù),折線統(tǒng)計圖.14、10%【解析】
設(shè)降價的百分率為x,則第一次降價后的單價是原來的(1?x),第二次降價后的單價是原來的(1?x)2,根據(jù)題意列方程解答即可.【詳解】解:設(shè)降價的百分率為x,根據(jù)題意列方程得:100×(1?x)2=81解得x1=0.1,x2=1.9(不符合題意,舍去).所以降價的百分率為0.1,即10%.故答案為:10%.【點睛】本題考查了一元二次方程的應用.找到關(guān)鍵描述語,根據(jù)等量關(guān)系準確的列出方程是解決問題的關(guān)鍵.還要判斷所求的解是否符合題意,舍去不合題意的解.15、2:1【解析】
由相似三角形的面積比等于相似比的平方,即可求得與的位似比.【詳解】解與是位似圖形,且對應面積比為4:9,與的相似比為2:1,故答案為:2:1.【點睛】本題考查了位似的相關(guān)知識,位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.16、3:2;【解析】
由AG//BC可得△AFG與△BFD相似,△AEG與△CED相似,根據(jù)相似比求解.【詳解】假設(shè):AF=3x,BF=5x,∵△AFG與△BFD相似∴AG=3y,BD=5y
由題意BC:CD=3:2則CD=2y
∵△AEG與△CED相似∴AE:EC=AG:DC=3:2.【點睛】本題考查的是相似三角形,熟練掌握相似三角形的性質(zhì)是解題的關(guān)鍵.17、22.5°【解析】
四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質(zhì);等腰三角形的性質(zhì).18、48°【解析】
如圖,在⊙O上取一點K,連接AK、KC、OA、OC,由圓的內(nèi)接四邊形的性質(zhì)可求出∠AKC的度數(shù),利用圓周角定理可求出∠AOC的度數(shù),由切線性質(zhì)可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【詳解】如圖,在⊙O上取一點K,連接AK、KC、OA、OC.∵四邊形AKCB內(nèi)接于圓,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分別切⊙O于A、C兩點,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案為48°.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì)、周角定理及切線性質(zhì),圓內(nèi)接四邊形的對角互補;在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;圓的切線垂直于過切點的直徑;熟練掌握相關(guān)知識是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】
(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)2016;(2)a(a﹣2),.【解析】試題分析:(1)分別根據(jù)0指數(shù)冪及負整數(shù)指數(shù)冪的計算法則、特殊角的三角函數(shù)值、絕對值的性質(zhì)及數(shù)的開方法則計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可;(2)先算括號里面的,再算除法,最后把a的值代入進行計算即可.試題解析:(1)原式==2016;(2)原式====a(a﹣2),當a=時,原式==.21、(1)∠B=40°;(2)AB=6.【解析】
(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD
,即可求得∠CAD=∠ADO
,繼而求得答案;
(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD
,由點F為弧AD的中點,易得△AOF是等邊三角形,繼而求得答案.【詳解】解:(1)如解圖①,連接OD,∵BC切⊙O于點D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解圖②,連接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵點F為弧AD的中點,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF為等邊三角形,∴∠FAO=60°,則∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【點睛】本題考查了切線的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),弧弦圓心角的關(guān)系,等邊三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì).熟練掌握切線的性質(zhì)是解(1)的關(guān)鍵,證明△AOF為等邊三角形是解(2)的關(guān)鍵.22、見解析【解析】
由BE=CF可得BC=EF,即可判定,再利用全等三角形的性質(zhì)證明即可.【詳解】∵BE=CF,∴,即BC=EF,又∵AB=DE,∠B=∠DEF,∴在與中,,∴,∴AC=DF.【點睛】本題主要考查了三角形全等的判定,熟練掌握三角形全等的判定定理是解決本題的關(guān)鍵.23、證明見解析.【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據(jù)垂直可得出∠DBE=∠CBE=30°,繼而可根據(jù)SAS證明△BDE≌△BCE;(2)根據(jù)(1)以及旋轉(zhuǎn)的性質(zhì)可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【詳解】(1)證明:∵△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉(zhuǎn)而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點:旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.24、(1)1;(1)見解析.【解析】試題分析:(1)根據(jù)菱形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠1=∠ACD,所以∠ACD=∠1,根據(jù)等角對等邊的性質(zhì)可得CM=DM,再根據(jù)等腰三角形三線合一的性質(zhì)可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;
(1)先利用“邊角邊”證明△CEM和△CFM全等,根據(jù)全等三角形對應邊相等可得ME=MF,延長AB交DF于點G,然后證明∠1=∠G,根據(jù)等角對等邊的性質(zhì)可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據(jù)全等三角形對應邊相等可得GF=DF,最后結(jié)合圖形GM=GF+MF即可得證.試題解析:(1)∵四邊形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠1,
∴∠ACD=∠1,
∴MC=MD,
∵ME⊥CD,
∴CD=1CE,
∵CE=1,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學生態(tài)工程(生態(tài)修復工程)試題及答案
- 2025年高職市場營銷(促銷策略設(shè)計)試題及答案
- 2025年中職安全(實操訓練)試題及答案
- 2026年礦山安全(通風管理)試題及答案
- 2025年高職第一學年(汽車檢測與維修技術(shù))維修實訓階段測試題及答案
- 2025年高職電子技術(shù)應用(電路故障排查)試題及答案
- 2025年高職表演(影視配音)試題及答案
- 2025年大學第三學年(大數(shù)據(jù)管理與應用)數(shù)據(jù)分析階段測試題及答案
- 2025年中職(中草藥栽培)藥用植物種植測試題及答案
- 2025年高職(冷鏈物流技術(shù)與管理)冷鏈倉儲制冷技術(shù)專項測試試題及答案
- 八上語文期末作文押題??贾黝}佳作
- 番茄的營養(yǎng)及施肥
- 2025年國家開放大學電大《電子商務概論》機考真題題庫及答案1
- 氣象行業(yè)氣象設(shè)備運維工程師崗位招聘考試試卷及答案
- 霧化吸入治療效果的評估與觀察
- 員工侵吞貨款協(xié)議書
- DB1310T 370-2025 化學分析實驗室玻璃儀器清洗規(guī)范
- 防爆墻泄壓墻施工方案
- 創(chuàng)意美術(shù)生蠔課件
- 2025年上海市事業(yè)單位教師招聘體育學科專業(yè)知識考試
- 小學六年級英語重點語法全總結(jié)
評論
0/150
提交評論