寧波財經(jīng)學(xué)院《人工智能中的深度學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
寧波財經(jīng)學(xué)院《人工智能中的深度學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
寧波財經(jīng)學(xué)院《人工智能中的深度學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
寧波財經(jīng)學(xué)院《人工智能中的深度學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
寧波財經(jīng)學(xué)院《人工智能中的深度學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁寧波財經(jīng)學(xué)院《人工智能中的深度學(xué)習(xí)》

2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能在工業(yè)生產(chǎn)中的質(zhì)量檢測方面有廣泛應(yīng)用。假設(shè)要開發(fā)一個能夠檢測產(chǎn)品缺陷的系統(tǒng),需要考慮光照、拍攝角度等因素對圖像的影響。以下關(guān)于解決這些影響的方法,哪一項是不正確的?()A.使用多光源和多角度拍攝,獲取更全面的產(chǎn)品圖像B.對圖像進(jìn)行預(yù)處理,如歸一化和標(biāo)準(zhǔn)化,減少光照和角度的影響C.忽略光照和角度的變化,依靠模型的自適應(yīng)能力D.建立光照和角度的模型,對圖像進(jìn)行校正2、在人工智能的算法選擇中,需要根據(jù)具體問題和數(shù)據(jù)特點(diǎn)進(jìn)行決策。假設(shè)要解決一個分類問題,數(shù)據(jù)具有高維度和復(fù)雜的非線性關(guān)系,以下關(guān)于算法選擇的描述,正確的是:()A.線性分類算法如邏輯回歸一定能夠處理這種復(fù)雜的數(shù)據(jù),無需考慮其他算法B.決策樹算法在處理高維度和非線性數(shù)據(jù)時總是表現(xiàn)最佳C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)對于處理圖像等具有空間結(jié)構(gòu)的數(shù)據(jù)效果顯著,但對于一般的高維數(shù)據(jù)可能不太適用D.支持向量機(jī)(SVM)結(jié)合核函數(shù)能夠有效地處理非線性分類問題,是一個合適的選擇3、在人工智能的可解釋性方面,一直是一個研究熱點(diǎn)。假設(shè)開發(fā)了一個用于信用評估的人工智能模型,以下關(guān)于解釋模型決策的方法,哪一項是不太可行的?()A.使用特征重要性分析,確定哪些輸入特征對模型的決策影響最大B.對模型的內(nèi)部結(jié)構(gòu)和參數(shù)進(jìn)行詳細(xì)解釋,讓用戶理解模型的工作原理C.通過生成示例來說明模型在不同情況下的決策邏輯D.拒絕提供任何解釋,認(rèn)為模型的準(zhǔn)確性比可解釋性更重要4、在人工智能的圖像增強(qiáng)技術(shù)中,目的是提高圖像的質(zhì)量和可讀性。假設(shè)我們要對一張低光照條件下拍攝的照片進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)的方法,哪一項是不準(zhǔn)確的?()A.直方圖均衡化B.銳化濾波C.中值濾波D.圖像增強(qiáng)不會引入任何噪聲5、在人工智能的計算機(jī)視覺任務(wù)中,目標(biāo)跟蹤是一個具有挑戰(zhàn)性的問題。假設(shè)我們要跟蹤一個在人群中移動的人物,以下關(guān)于目標(biāo)跟蹤的方法,哪一項是不準(zhǔn)確的?()A.基于特征匹配的方法B.基于深度學(xué)習(xí)的方法C.基于粒子濾波的方法D.目標(biāo)跟蹤不需要考慮光照和遮擋的影響6、深度學(xué)習(xí)在近年來取得了顯著的成果,特別是在圖像識別和語音識別等領(lǐng)域。以下關(guān)于深度學(xué)習(xí)的敘述,不準(zhǔn)確的是()A.深度學(xué)習(xí)是一種基于多層神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)方法,能夠自動從數(shù)據(jù)中學(xué)習(xí)特征B.深度學(xué)習(xí)模型需要大量的訓(xùn)練數(shù)據(jù)和強(qiáng)大的計算資源來進(jìn)行訓(xùn)練C.深度學(xué)習(xí)可以解決傳統(tǒng)機(jī)器學(xué)習(xí)方法難以處理的復(fù)雜問題,如語義理解和情感分析D.深度學(xué)習(xí)模型的結(jié)構(gòu)和參數(shù)一旦確定,就無法根據(jù)新的數(shù)據(jù)進(jìn)行調(diào)整和優(yōu)化7、在人工智能的可解釋性研究中,對于一個復(fù)雜的深度學(xué)習(xí)模型,假設(shè)需要向用戶解釋模型的決策依據(jù)和輸出結(jié)果。以下哪種方法能夠提供更直觀和易于理解的解釋?()A.特征重要性分析,確定輸入特征對輸出的影響B(tài).可視化中間層的激活值C.生成文本解釋,描述模型的推理過程D.以上都是8、知識圖譜是一種用于表示知識和關(guān)系的結(jié)構(gòu)化數(shù)據(jù)模型。以下關(guān)于知識圖譜的說法,不正確的是()A.知識圖譜可以整合來自不同來源的知識,構(gòu)建一個全面的知識體系B.知識圖譜中的節(jié)點(diǎn)表示實(shí)體,邊表示實(shí)體之間的關(guān)系C.知識圖譜在智能搜索、推薦系統(tǒng)和問答系統(tǒng)等領(lǐng)域有著重要的應(yīng)用D.構(gòu)建知識圖譜非常簡單,不需要大量的人力和時間投入9、假設(shè)在一個智能工廠的質(zhì)量檢測環(huán)節(jié),需要利用人工智能技術(shù)自動檢測產(chǎn)品的缺陷,以下哪種圖像分析技術(shù)和模型可能會被采用?()A.傳統(tǒng)的圖像處理算法B.基于深度學(xué)習(xí)的目標(biāo)檢測C.基于特征工程的分類模型D.以上都是10、在人工智能的目標(biāo)檢測任務(wù)中,假設(shè)圖像中存在多個不同大小和形狀的目標(biāo),且目標(biāo)之間存在遮擋。以下哪種檢測算法能夠較好地應(yīng)對這種復(fù)雜情況?()A.FasterR-CNN,基于區(qū)域建議網(wǎng)絡(luò)B.YOLO(YouOnlyLookOnce),一次性檢測所有目標(biāo)C.SSD(SingleShotMultiBoxDetector),多尺度檢測D.以上都是11、在人工智能的智能推薦系統(tǒng)中,假設(shè)要為用戶提供個性化的推薦服務(wù),以下關(guān)于推薦算法的描述,正確的是:()A.協(xié)同過濾算法只考慮用戶的歷史行為,不考慮物品的特征B.基于內(nèi)容的推薦算法能夠根據(jù)物品的屬性為用戶推薦相似的物品C.混合推薦算法結(jié)合了多種推薦方法的優(yōu)點(diǎn),能夠提供更準(zhǔn)確的推薦D.以上推薦算法都存在一定的局限性,無法滿足所有用戶的需求12、在人工智能的自動駕駛領(lǐng)域,為了確保車輛在各種路況和天氣條件下的安全行駛,需要綜合考慮多個傳感器的數(shù)據(jù)進(jìn)行決策。以下哪種傳感器的數(shù)據(jù)融合方法可能是關(guān)鍵的技術(shù)挑戰(zhàn)?()A.基于卡爾曼濾波B.基于深度學(xué)習(xí)C.基于貝葉斯估計D.以上都是13、人工智能在醫(yī)療領(lǐng)域的應(yīng)用不斷拓展。假設(shè)利用人工智能輔助醫(yī)生進(jìn)行疾病診斷,以下關(guān)于其應(yīng)用的描述,哪一項是不準(zhǔn)確的?()A.人工智能可以分析醫(yī)學(xué)影像,幫助醫(yī)生發(fā)現(xiàn)潛在的病變B.基于大數(shù)據(jù)的人工智能模型能夠提供更準(zhǔn)確的診斷建議,但不能取代醫(yī)生的最終判斷C.人工智能在醫(yī)療中的應(yīng)用可以完全避免誤診和漏診的情況發(fā)生D.醫(yī)生和人工智能系統(tǒng)的合作可以提高醫(yī)療效率和質(zhì)量14、人工智能在教育領(lǐng)域的應(yīng)用逐漸興起。假設(shè)要開發(fā)一個智能輔導(dǎo)系統(tǒng),以下關(guān)于這種系統(tǒng)的描述,正確的是:()A.智能輔導(dǎo)系統(tǒng)能夠根據(jù)每個學(xué)生的學(xué)習(xí)進(jìn)度和特點(diǎn),提供個性化的學(xué)習(xí)方案B.智能輔導(dǎo)系統(tǒng)可以完全取代教師的作用,學(xué)生無需與教師進(jìn)行交流C.智能輔導(dǎo)系統(tǒng)的效果只取決于系統(tǒng)的功能,與學(xué)生的學(xué)習(xí)態(tài)度和習(xí)慣無關(guān)D.智能輔導(dǎo)系統(tǒng)不需要考慮教育倫理和學(xué)生隱私保護(hù)問題15、人工智能中的自動推理技術(shù)旨在讓計算機(jī)自動進(jìn)行邏輯推理和問題求解。以下關(guān)于自動推理的說法,不正確的是()A.自動推理可以應(yīng)用于定理證明、規(guī)劃和診斷等領(lǐng)域B.基于規(guī)則的推理和基于模型的推理是自動推理的常見方法C.自動推理系統(tǒng)能夠處理所有復(fù)雜的邏輯問題,無需人類干預(yù)D.不確定性推理和非單調(diào)推理是自動推理中的難點(diǎn)和研究熱點(diǎn)二、簡答題(本大題共4個小題,共20分)1、(本題5分)談?wù)勅斯ぶ悄茉谝魳飞芍械募夹g(shù)。2、(本題5分)解釋異常檢測在數(shù)據(jù)分析中的方法。3、(本題5分)解釋人工智能中的過擬合和欠擬合問題。4、(本題5分)簡述樸素貝葉斯算法的基本原理。三、操作題(本大題共5個小題,共25分)1、(本題5分)借助強(qiáng)化學(xué)習(xí)算法,如Q-learning或DeepQ-Network,實(shí)現(xiàn)一個簡單的游戲環(huán)境(如迷宮游戲)的智能體,讓其通過學(xué)習(xí)找到最優(yōu)策略。2、(本題5分)利用自然語言處理技術(shù)進(jìn)行文本情感分析,對社交媒體上的用戶評論進(jìn)行情感分類,了解用戶的態(tài)度和意見。3、(本題5分)利用Python的PyTorch庫,實(shí)現(xiàn)一個基于循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的文本生成模型。以給定的一段文本為基礎(chǔ),訓(xùn)練模型生成具有相似風(fēng)格和主題的新文本。對生成的文本進(jìn)行質(zhì)量評估和分析。4、(本題5分)利用Scikit-learn中的K-Means聚類算法,對客戶行為數(shù)據(jù)進(jìn)行細(xì)分。為精準(zhǔn)營銷提供依據(jù)。5、(本題5分)利用Python的TensorFlow庫,構(gòu)建一個深度卷積生成對抗網(wǎng)絡(luò)(DCGAN)用于生成高分辨率圖像,評估生成圖像的質(zhì)量和逼真度。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)以某智能航空訂票

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論