來賓市重點中學(xué)2024-2025學(xué)年高二下數(shù)學(xué)期末質(zhì)量檢測試題含解析_第1頁
來賓市重點中學(xué)2024-2025學(xué)年高二下數(shù)學(xué)期末質(zhì)量檢測試題含解析_第2頁
來賓市重點中學(xué)2024-2025學(xué)年高二下數(shù)學(xué)期末質(zhì)量檢測試題含解析_第3頁
來賓市重點中學(xué)2024-2025學(xué)年高二下數(shù)學(xué)期末質(zhì)量檢測試題含解析_第4頁
來賓市重點中學(xué)2024-2025學(xué)年高二下數(shù)學(xué)期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

來賓市重點中學(xué)2024-2025學(xué)年高二下數(shù)學(xué)期末質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則實數(shù)的大小關(guān)系是()A. B. C. D.2.直線的傾斜角為()A. B. C. D.3.若實數(shù)滿足條件,則的最小值為A. B. C. D.4.(+)(2-)5的展開式中33的系數(shù)為A.-80 B.-40 C.40 D.805.設(shè)變量x,y滿足約束條件,則目標(biāo)函數(shù)的最大值為()A.4 B.6 C.8 D.106.已知復(fù)數(shù),若,則實數(shù)的值為()A. B.6 C. D.7.已知集合,,且,則實數(shù)的取值范圍為().A. B.C. D.8.甲、乙、丙3位志愿者安排在周一至周五的5天中參加某項志愿者活動,要求每人參加一天且每天至多安排一人,并要求甲安排在另外兩位前面,不同的安排方法共有()A.20種 B.30種 C.40種 D.60種9.如圖,正方體,則下列四個命題:①點在直線上運動時,直線與直線所成角的大小不變②點在直線上運動時,直線與平面所成角的大小不變③點在直線上運動時,二面角的大小不變④點在直線上運動時,三棱錐的體積不變其中的真命題是()A.①③ B.③④ C.①②④ D.①③④10.設(shè)隨機變量服從正態(tài)分布,若,則

=A. B. C. D.11.已知,則“”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件12.一同學(xué)在電腦中打出如下若干個圈:○●○○●○○○●○○○○●○○○○○●……若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前55個圈中的●個數(shù)是()A.10 B.9 C.8 D.11二、填空題:本題共4小題,每小題5分,共20分。13.總決賽采用7場4勝制,2018年總決賽兩支球隊分別為勇士和騎士,假設(shè)每場比賽勇士獲勝的概率為0.7,騎士獲勝的概率為0.3,且每場比賽的結(jié)果相互獨立,則恰好5場比賽決出總冠軍的概率為__________.14.已知R上可導(dǎo)函數(shù)的圖象如圖所示,則不等式的解集為__________________.15.若將函數(shù)表示為,其中為實數(shù),則等于_______.16.若復(fù)數(shù)z滿足|z-i|≤(i為虛數(shù)單位),則z在復(fù)平面內(nèi)所對應(yīng)的圖形的面積為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,直線被圓截得的弦長為.(1)求橢圓的方程;(2)過點的直線交橢圓于,兩點,在軸上是否存在定點,使得為定值?若存在,求出點的坐標(biāo)和的值;若不存在,請說明理由.18.(12分)如圖,四棱錐中,為正三角形,為正方形,平面平面,、分別為、中點.(1)證明:平面;(2)求直線與平面所成角的正弦值.19.(12分)已知數(shù)列的前項和,且().(1)若數(shù)列是等比數(shù)列,求的值;(2)求數(shù)列的通項公式。20.(12分)某園林基地培育了一種新觀賞植物,經(jīng)過了一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進行統(tǒng)計,按分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在的數(shù)據(jù)).(1)求樣本容量和頻率分布直方圖中的(2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機抽取3株,設(shè)隨機變量表示所抽取的3株高度在內(nèi)的株數(shù),求隨機變量的分布列及數(shù)學(xué)期望.21.(12分)已知函數(shù).(1)求函數(shù)的定義域并判斷奇偶性;(2)若,求實數(shù)m的取值范圍.22.(10分)如果,求實數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

容易得出30.6>1,0<0.63<1,log0.63<0,從而可得出a,b,c的大小關(guān)系.【詳解】∵30.6>30=1,0<0.63<0.60=1,log0.63<log0.61=0;∴a>b>c.故選:A.本題考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,熟記單調(diào)性是關(guān)鍵,是基礎(chǔ)題2、B【解析】試題分析:記直線的傾斜角為,∴,故選B.考點:直線的傾斜角.3、B【解析】分析:作出約束條件的平面區(qū)域,易知z=的幾何意義是點A(x,y)與點D(﹣1,0)連線的直線的斜率,從而解得.詳解:由題意作實數(shù)x,y滿足條件的平面區(qū)域如下,z=的幾何意義是點P(x,y)與點D(﹣1,0),連線的直線的斜率,由,解得A(1,1)故當(dāng)P在A時,z=有最小值,z==.故答案為:B.點睛:(1)本題主要考查線性規(guī)劃和斜率的應(yīng)用,意在考查學(xué)生對這些知識的掌握水平和數(shù)形結(jié)合思想方法.(2)表示兩點所在直線的斜率.4、C【解析】,由展開式的通項公式可得:當(dāng)時,展開式中的系數(shù)為;當(dāng)時,展開式中的系數(shù)為,則的系數(shù)為.故選C.【名師點睛】(1)二項式定理的核心是通項公式,求解此類問題可以分兩步完成:第一步根據(jù)所給出的條件(特定項)和通項公式,建立方程來確定指數(shù)(求解時要注意二項式系數(shù)中n和r的隱含條件,即n,r均為非負(fù)整數(shù),且n≥r,如常數(shù)項指數(shù)為零、有理項指數(shù)為整數(shù)等);第二步是根據(jù)所求的指數(shù),再求所求解的項.(2)求兩個多項式的積的特定項,可先化簡或利用分類加法計數(shù)原理討論求解.5、C【解析】

先作出約束條件表示的平面區(qū)域,令,由圖求出的范圍,進而求出的最大值.【詳解】作出可行域如圖:令,由得,點;由得,點,由圖知當(dāng)目標(biāo)函數(shù)經(jīng)過點時,最大值為4,當(dāng)經(jīng)過點時,最小值為,所以的最大值為8.故選:C本題主要考查了簡單線性規(guī)劃問題,考查了學(xué)生的作圖能力與數(shù)形結(jié)合的思想.6、D【解析】

根據(jù)題目復(fù)數(shù),且,利用復(fù)數(shù)的除法運算法則,將復(fù)數(shù)z化簡成的形式,再令虛部為零,解出的值,即可求解出答案.【詳解】,∵,∴,則.故答案選D.本題主要考查了利用復(fù)數(shù)的除法運算法則化簡以及根據(jù)復(fù)數(shù)的概念求參數(shù).7、C【解析】

由已知求得,再由,即可求得的范圍,得到答案.【詳解】由題意,集合,,可得,又由,所以.故選C.本題主要考查了集合的混合運算,以及利用集合的運算求解參數(shù)的范圍,其中解答中熟記集合基本運算方法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、A【解析】

根據(jù)題意,分析可得,甲可以被分配在星期一、二、三;據(jù)此分3種情況討論,計算可得其情況數(shù)目,進而由加法原理,計算可得答案.解:根據(jù)題意,要求甲安排在另外兩位前面,則甲有3種分配方法,即甲在星期一、二、三;分3種情況討論可得,甲在星期一有A42=12種安排方法,甲在星期二有A32=6種安排方法,甲在星期三有A22=2種安排方法,總共有12+6+2=20種;故選A.9、D【解析】

①由與平面的位置關(guān)系判斷直線與直線所成角的大小變化情況;②考慮與平面所成角的大小,然后判斷直線與平面所成角的大小是否不變;③根據(jù)以及二面角的定義判斷二面角的大小是否不變;④根據(jù)線面平行的性質(zhì)以及三棱錐的體積計算公式判斷三棱錐的體積是否不變.【詳解】①如下圖,連接,因為,所以平面,所以,所以直線與直線所成角的大小不變;②如下圖,連接,記到平面的距離為,設(shè)正方體棱長為,所以,所以,又因為,所以,所以與平面所成角的正弦值為:,又因為,所以,所以所以與平面所成角的正弦值為:,顯然,所以直線與平面所成角的大小在變化;③因為,所以四點共面,又在直線上,所以二面角的大小不變;④因為,平面,平面,所以平面,所以當(dāng)在上運動時,點到平面的距離不變,所以三棱錐的體積不變.所以真命題有:①③④.故選:D.本題考查空間中點、線、面的位置關(guān)系的判斷,難度一般.(1)已知直線平行平面,則該直線上任意一點到平面的距離都相等;(2)線面角的計算方法:<1>作出線段的射影,計算出射影長度,利用比值關(guān)系即可求解線面角的大?。?lt;2>計算線段在平面外的一個端點到平面的距離,該距離比上線段長度即為線面角的正弦.10、B【解析】分析:根據(jù)正態(tài)分布圖像可知,故它們中點即為對稱軸.詳解:由題可得:,故對稱軸為故選B.點睛:考查正態(tài)分布的基本量和圖像性質(zhì),屬于基礎(chǔ)題.11、A【解析】

“a>1”?“”,“”?“a>1或a<0”,由此能求出結(jié)果.【詳解】a∈R,則“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要條件.故選A.充分、必要條件的三種判斷方法.1.定義法:直接判斷“若則”、“若則”的真假.并注意和圖示相結(jié)合,例如“?”為真,則是的充分條件.2.等價法:利用?與非?非,?與非?非,?與非?非的等價關(guān)系,對于條件或結(jié)論是否定式的命題,一般運用等價法.3.集合法:若?,則是的充分條件或是的必要條件;若=,則是的充要條件.12、B【解析】將圓分組:第一組:○●,有個圓;第二組:○○●,有個圓;第三組:○○○●,有個,…,每組圓的總個數(shù)構(gòu)成了一個等差數(shù)列,前組圓的總個數(shù)為,令,解得,即包含整組,故含有●的個數(shù)是個,故選B.【方法點睛】本題考查等差數(shù)列的求和公式及歸納推理,屬于中檔題.歸納推理的一般步驟:一、通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì).二、從已知的相同性質(zhì)中推出一個明確表述的一般性命題(猜想).常見的歸納推理分為數(shù)的歸納和形的歸納兩類:(1)數(shù)的歸納包括數(shù)的歸納和式子的歸納,解決此類問題時,需要細(xì)心觀察,尋求相鄰項及項與序號之間的關(guān)系,同時還要聯(lián)系相關(guān)的知識,如等差數(shù)列、等比數(shù)列等;(2)形的歸納主要包括圖形數(shù)目的歸納和圖形變化規(guī)律的歸納.二、填空題:本題共4小題,每小題5分,共20分。13、0.3108【解析】分析:設(shè)“勇士以比分4:1獲勝”為事件,“第場比賽取勝”記作事件,由能求出勇士隊以比分4:1獲勝的概率.設(shè)“騎士以比分4:1獲勝”為事件,“第場比賽取勝”記作事件,由能求出騎士隊以比分4:1獲勝的概率.則恰好5場比賽決出總冠軍的概率為.詳解:設(shè)“勇士以比分4:1獲勝”為事件,“第場比賽取勝”記作事件,由能求出勇士隊以比分4:1獲勝的概率.則設(shè)“騎士以比分4:1獲勝”為事件,“第場比賽取勝”記作事件,由能求出騎士隊以比分4:1獲勝的概率.則則恰好5場比賽決出總冠軍的概率為即答案為0.3108.點睛:本題主要考查了次獨立重復(fù)試驗中恰好發(fā)生次的概率,同時考查了分析問題的能力和計算能力,屬于中檔題.14、【解析】

先由圖象得出不等式和的解集,再由不等式,得出或兩種情況,解出這兩個不等式可得出答案.【詳解】由圖像可知,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,則不等式的解集為,不等式的解集為.由,可得或.解不等式組,得;解不等式組,得.因此,不等式的解集為,故答案為.本題考查函數(shù)的單調(diào)性與導(dǎo)數(shù)之間的關(guān)系,并求解與導(dǎo)數(shù)相關(guān)的不等式,解題時要注意導(dǎo)數(shù)的符號與函數(shù)單調(diào)性之間的關(guān)系,考查分析問題的能力,屬于中等題.15、20.【解析】

把函數(shù)f(x)=x6=[﹣1+(1+x)]6按照二項式定理展開,結(jié)合已知條件,求得a3的值.【詳解】∵函數(shù)f(x)=x6=[﹣1+(1+x)]6=1?(1+x)?(1+x)2?(1+x)3?(1+x)6,又f(x)=a0+a1(1+x)+a2(1+x)2+…a6(1+x)6,其中a0,a1,a2,…,a6為實數(shù),則a320,故答案為20.本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),屬于基礎(chǔ)題.16、2π【解析】分析:由的幾何意義可知,點的軌跡是以為圓心,為半徑的實心圓,由圓的面積公式可得結(jié)論.詳解:,在復(fù)平面內(nèi)對應(yīng)點的的軌跡是以為圓心,為半徑的實心圓,該圓的面積為,故答案為.點睛:復(fù)數(shù)的模的幾何意義是復(fù)平面內(nèi)兩點間的距離,所以若,則表示點與點的距離,表示以為圓心,以為半徑的圓.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】

(1)由橢圓的離心率為,求得,再由圓的性質(zhì)和圓的弦長公式,求得,進而可求解橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)的方程:,聯(lián)立方程組,利用根與系數(shù)的關(guān)系,求得,再利用向量的數(shù)量積的運算和代數(shù)式的性質(zhì),即可得到結(jié)論.【詳解】(1)∵橢圓的離心率為,∴,∵圓的圓心到直線的距離為,∴直線被圓截得的弦長為.解得,故,∴橢圓的方程為.(2)設(shè),,,當(dāng)直線與軸不重合時,設(shè)的方程:.由得,,∴,,,當(dāng),即時,的值與無關(guān),此時.當(dāng)直線與軸重合且時,.∴存在點,使得為定值.本題主要考查橢圓的標(biāo)準(zhǔn)方程的求解、及直線與圓錐曲線的位置關(guān)系的應(yīng)用問題,解答此類題目,通常聯(lián)立直線方程與橢圓(圓錐曲線)方程的方程組,應(yīng)用一元二次方程根與系數(shù)的關(guān)系進行求解,此類問題易錯點是復(fù)雜式子的變形能力不足,導(dǎo)致錯解,能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等.18、(1)見解析;(2).【解析】分析:(1)要證線面平行,只需在面內(nèi)找一線與已知線平行即可,連接,根據(jù)中位線即可得即可求證;(2)求線面角則可直接建立空間直角坐標(biāo)系,寫出線向量和面的法向量,然后根據(jù)向量夾角公式求解即可.詳解:(1)連接,∵是正方形,是的中點,∴是的中點,∵是的中點,∴,∵平面,平面,∴平面.(2)建立如圖所示空間直角坐標(biāo)系,設(shè),則,,,,,,,設(shè)平面的法向量,則,取得,設(shè)與平面所成角為,則.點睛:考查立體幾何的線面平行證明,線面角的求法,對定理的熟悉和常規(guī)方法要做到熟練是解題關(guān)鍵.屬于中檔題.19、(1)1;(2)()【解析】分析:(1)由可得,∴a2=3,a3=7,依題意,得(3+t)2=(1+t)(7+t),解得t=1;(2)由(1),知當(dāng)n≥2時,,即數(shù)列{an+1}是以2為首項,2為公比的等比數(shù)列,得,即可求通項.詳解:(1)當(dāng)時,由,得.當(dāng)時,,即,∴,.依題意,得,解得,當(dāng)時,,,即為等比數(shù)列成立,故實數(shù)的值為1;(2)由(1),知當(dāng)時,,又因為,所以數(shù)列是以2為首項,2為公比的等比數(shù)列.所以,∴().點睛:(1)證明數(shù)列為等比數(shù)列時,常運用等比數(shù)列的定義去證明,在證明過程中,容易忽視驗證首項不為零這一步驟。(2)數(shù)列通項的求法方法多樣,解題時要根據(jù)數(shù)列通項公式的特點去選擇。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論