版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南明德中學2025屆高二下數(shù)學期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c2.用數(shù)學歸納法證明過程中,假設時,不等式成立,則需證當時,也成立,則()A. B.C. D.3.定積分等于()A. B. C. D.4.某產(chǎn)品的廣告費支出與銷售額(單位:萬元)之間的關(guān)系如下表,由此得到與的線性回歸方程為,由此可得:當廣告支出5萬元時,隨機誤差的效應(殘差)為()245683040605070A.-10 B.0 C.10 D.205.已知過點作曲線的切線有且僅有1條,則實數(shù)的取值是()A.0 B.4 C.0或-4 D.0或46.已知函數(shù),函數(shù)有四個不同的零點,從小到大依次為,,,,則的取值范圍為()A. B. C. D.7.在正四面體中,點,分別在棱,上,若且,,則四面體的體積為()A. B. C. D.8.PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物),為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某時間段車流量與PM2.5濃度的數(shù)據(jù)如下表:時間周一周二周三周四周五車流量(萬輛)100102108114116濃度(微克)7880848890根據(jù)上表數(shù)據(jù),用最小二乘法求出與的線性回歸方程是()參考公式:,;參考數(shù)據(jù):,;A. B. C. D.9.拋物線的焦點坐標是()A. B. C. D.10.函數(shù)的圖象恒過定點A,若點A在直線上,其中m,n均大于0,則的最小值為()A.2 B.4 C.8 D.1611.已知集合,,則等于()A. B. C. D.12.若函數(shù)的圖象上存在關(guān)于直線對稱的點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域為_______________.14.已知則的值為.15.若一個圓錐的側(cè)面展開圖是面積為的半圓面,則該圓錐的底面半徑為_______.16.若復數(shù),其中是虛數(shù)單位,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知復數(shù),是的共軛復數(shù),且為純虛數(shù),在復平面內(nèi)所對應的點在第二象限,求.18.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若有兩個零點,求實數(shù)的取值范圍.19.(12分)已知函數(shù)f(x)=|x+a|+|x-2|.(1)當a=-3時,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.20.(12分)已知函數(shù),.(1)若不等式對任意的恒成立,求實數(shù)的取值范圍;(2)記表示中的最小值,若函數(shù)在內(nèi)恰有一個零點,求實的取值范圍.21.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足(2b﹣c)cosA=acosC.(1)求角A;(2)若,b+c=5,求△ABC的面積.22.(10分)已知函數(shù),當時,函數(shù)有極大值8.(Ⅰ)求函數(shù)的解析式;(Ⅱ)若不等式在區(qū)間上恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.本題考查三個數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎知識,考查運算求解能力,是基礎題.2、C【解析】故選3、B【解析】
由定積分表示半個圓的面積,再由圓的面積公式可求結(jié)果?!驹斀狻坑深}意可知定積分表示半徑為的半個圓的面積,所以,選B.1.由函數(shù)圖象或曲線圍成的曲邊圖形面積的計算及應用,一般轉(zhuǎn)化為定積分的計算及應用,但一定要找準積分上限、下限及被積函數(shù),且當圖形的邊界不同時,要討論解決.(1)畫出圖形,確定圖形范圍;(2)解方程組求出圖形交點坐標,確定積分上、下限;(3)確定被積函數(shù),注意分清函數(shù)圖形的上、下位置;(4)計算定積分,求出平面圖形的面積.2.由函數(shù)求其定積分,能用公式的利用公式計算,有些特殊函數(shù)可根據(jù)其幾何意義,求出其圍成的幾何圖形的面積,即其定積分.有些由函數(shù)的性質(zhì)求函數(shù)的定積分。4、C【解析】
由已知求得的值,得到,求得線性回歸方程,令求得的值,由此可求解結(jié)論.【詳解】由題意,根據(jù)表格中的數(shù)據(jù),可得,所以,所以,取,得,所以隨機誤差的效應(殘差)為,故選C.本題主要考查了回歸直線方程的求解,以及殘差的求法,著重考查了推理與運算能力,屬于基礎題.5、C【解析】
求出導函數(shù),轉(zhuǎn)化求解切線方程,通過方程有兩個相等的解,推出結(jié)果即可.【詳解】設切點為,且函數(shù)的導數(shù),所以,則切線方程為,切線過點,代入得,所以,即方程有兩個相等的解,則有,解得或,故選C.本題主要考查了導數(shù)的幾何意義的應用,其中解答中熟記導數(shù)的幾何意義,求解曲線在某點處的切線方程是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及推理與運算能力,屬于基礎題.6、B【解析】分析:通過f(x)的單調(diào)性,畫出f(x)的圖象和直線y=a,考慮四個交點的情況,得到x1=-2-x2,-1<x2≤0,x3x4=4,再由二次函數(shù)的單調(diào)性,可得所求范圍.詳解:當x>0時,f(x)=,可得f(x)在x>2遞增,在0<x<2處遞減,
由f(x)=e
(x+1)2,x≤0,
x<-1時,f(x)遞減;-1<x<0時,f(x)遞增,
可得x=-1處取得極小值1,
作出f(x)的圖象,以及直線y=a,
可得e
(x1+1)2=e
(x2+1)2=,即有x1+1+x2+1=0,可得x1=-2-x2,-1<x2≤0,可得x3x4=4,
x1x2+x3x4=4-2x2-x22=-(x2+1)2+5,在-1<x2≤0遞減,
可得所求范圍為[4,5).故選B.點睛:本題考查函數(shù)方程的轉(zhuǎn)化思想,以及數(shù)形結(jié)合思想方法,考查二次函數(shù)的最值求法,化簡整理的運算能力,屬于中檔題.7、C【解析】
由題意畫出圖形,設,,,由余弦定理得到關(guān)于,,的方程組,求解可得,的值,然后分別求出三角形的面積及A到平面的高,代入棱錐體積公式得答案.【詳解】如圖,設,,,∵,,∴由余弦定理得,①②③③-①得,,即,∵,則,代入③,得,又,得,,∴.∴A到平面PEF的距離.∴,故選C.本題考查棱柱、棱錐、棱臺體積的求法,考查數(shù)形結(jié)合的解題思想方法,考查計算能力,是中檔題.8、B【解析】
利用最小二乘法做出線性回歸直線的方程的系數(shù),寫出回歸直線的方程,得到結(jié)果.【詳解】由題意,b==0.72,a=84﹣0.72×108=6.24,∴=0.72x+6.24,故選:B.本題主要考查線性回歸方程,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫出散點圖,確定兩個變量具有線性相關(guān)關(guān)系;②計算的值;③計算回歸系數(shù);④寫出回歸直線方程為;回歸直線過樣本點中心是一條重要性質(zhì),利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.9、A【解析】分析:先把拋物線的方程化成標準方程,再求其焦點坐標.詳解:由題得,所以拋物線的焦點坐標為.故答案為A.點睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),意在考查學生對這些知識的掌握水平.(2)研究圓錐曲線時,首先一般把曲線的方程化成標準方程再研究.10、C【解析】
試題分析:根據(jù)對數(shù)函數(shù)的性質(zhì)先求出A的坐標,代入直線方程可得m、n的關(guān)系,再利用1的代換結(jié)合均值不等式求解即可.解:∵x=﹣2時,y=loga1﹣1=﹣1,∴函數(shù)y=loga(x+3)﹣1(a>0,a≠1)的圖象恒過定點(﹣2,﹣1)即A(﹣2,﹣1),∵點A在直線mx+ny+1=0上,∴﹣2m﹣n+1=0,即2m+n=1,∵mn>0,∴m>0,n>0,=()(2m+n)=4+++2≥4+2?=8,當且僅當m=,n=時取等號.故選C.考點:基本不等式在最值問題中的應用.11、C【解析】
分析:利用一元二次不等式的解法求出中不等式的解集確定出,然后利用交集的定義求解即可.詳解:由中不等式變形得,解得,即,因為,,故選C.點睛:研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關(guān)系時,關(guān)鍵是將兩集合的關(guān)系轉(zhuǎn)化為元素間的關(guān)系,本題實質(zhì)求滿足屬于集合且屬于集合的元素的集合.本題需注意兩集合一個是有限集,一個是無限集,按有限集逐一驗證為妥.12、D【解析】分析:設若函數(shù)的圖象上存在關(guān)于直線對稱的點,則函數(shù)與函數(shù)的圖象有交點,即有解,利用導數(shù)法,可得實數(shù)a的取值范圍.詳解:由的反函數(shù)為,函數(shù)與的圖象上存在關(guān)于直線對稱的點,則函數(shù)與函數(shù)的圖象有交點,即有解,即,令,則,當時,,在上單調(diào)遞增,當時,可得求得的最小值為1.實數(shù)的取值范圍是,故選:D.點睛:本題考查的知識點是函數(shù)圖象的交點與方程根的關(guān)系,利用導數(shù)求函數(shù)的最值,難度中檔.二、填空題:本題共4小題,每小題5分,共20分。13、{x|x∈(2kπ﹣,2kπ+),k∈Z}【解析】分析:這里的cosx以它的值充當角,要使sin(cosx)>0轉(zhuǎn)化成2kπ<cosx<2kπ+π,注意cosx自身的范圍.詳解:由sin(cosx)>0?2kπ<cosx<2kπ+π(k∈Z).又∵﹣1≤cosx≤1,∴0<cosx≤1;故所求定義域為{x|x∈(2kπ﹣,2kπ+),k∈Z}.故答案為:{x|x∈(2kπ﹣,2kπ+),k∈Z}.點睛:本題主要考查了函數(shù)的定義域及其求法及復合函數(shù)單調(diào)性的判斷,求三角函數(shù)的定義域,要解三角不等式,常用的方法有二:一是圖象,二是三角函數(shù)線.14、【解析】
試題分析:,.考點:分段函數(shù)求值.15、1【解析】
先根據(jù)側(cè)面展開是面積為的半圓算出圓錐的母線,再根據(jù)側(cè)面展開半圓的弧長即底面圓的周長求解.【詳解】如圖所示:設圓錐的半徑為r,高為h,母線長為l,因為圓錐的側(cè)面展開圖是半徑為l,面積為的半圓面,所以,解得,因為側(cè)面展開半圓的弧長即底面圓的周長,所以,故圓錐的底面半徑.本題考查圓錐的表面積的相關(guān)計算.主要依據(jù)側(cè)面展開的扇形的弧長即底面圓的半徑,扇形的弧長和面積計算公式.16、6【解析】
由可得,代入,利用復數(shù)乘法的運算法則求解即可.【詳解】∵,∴.∴,故答案為6.本題主要考查復數(shù)乘法的運算法則以及共軛復數(shù)的定義,意在考查綜合運用所學知識解決問題的能力,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】
設,根據(jù)題意列出關(guān)于的方程組求解,再結(jié)合所對應的點在第二象限,即可求出【詳解】設,則,∴又,.∴,聯(lián)立,解得又在第二象限,∴,即∴故答案為本題考查了復數(shù)的相關(guān)定義,設出復數(shù)的表示形式,根據(jù)題意列出方程組即可,本題較為基礎,注意計算。18、(1)當a≤0,在(0,2)上單調(diào)遞增,在(2,+∞)遞減;當,在(0,2)和上單調(diào)遞增,在(2,)遞減;當a=,在(0,+∞)遞增;當a>,在(0,)和(2,+∞)上單調(diào)遞增,在(,2)遞減;(2).【解析】
(1)求出,分四種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)由(1)知當時,單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,又,取,可證明,有兩個零點等價于,得,可證明,當時與當且時,至多一個零點,綜合討論結(jié)果可得結(jié)論.【詳解】(1)的定義域為,,(i)當時,恒成立,時,在上單調(diào)遞增;時,在上單調(diào)遞減.(ii)當時,由得,(舍去),①當,即時,恒成立,在上單調(diào)遞增;②當,即時,或,恒成立,在上單調(diào)遞增;時,恒成立,在上單調(diào)遞減.③當,即時,或時,恒成立,在單調(diào)遞增,時,恒成立,在上單調(diào)遞減.綜上,當時,單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;當時,單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間為;當時,單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)由(1)知當時,單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,又,取,令,則在成立,故單調(diào)遞增,,,有兩個零點等價于,得,,當時,,只有一個零點,不符合題意;當時,在單調(diào)遞增,至多只有一個零點,不符合題意;當且時,有兩個極值,,記,,令,則,當時,在單調(diào)遞增;當時,在單調(diào)遞減,故在單調(diào)遞增,時,,故,又,由(1)知,至多只有一個零點,不符合題意,綜上,實數(shù)的取值范圍為.本題是以導數(shù)的運用為背景的函數(shù)綜合題,主要考查了函數(shù)思想,化歸思想,抽象概括能力,綜合分析問題和解決問題的能力,屬于較難題,近來高考在逐年加大對導數(shù)問題的考查力度,不僅題型在變化,而且問題的難度、深度與廣度也在不斷加大,本部分的要求一定有三個層次:第一層次主要考查求導公式,求導法則與導數(shù)的幾何意義;第二層次是導數(shù)的簡單應用,包括求函數(shù)的單調(diào)區(qū)間、極值、最值、零點等;第三層次是綜合考查,包括解決應用問題,將導數(shù)內(nèi)容和傳統(tǒng)內(nèi)容中有關(guān)不等式甚至數(shù)列及函數(shù)單調(diào)性有機結(jié)合,設計綜合題.19、(1){x|x≥4或x≤1};(2)[-3,0].【解析】試題分析:(1)解絕對值不等式首先分情況去掉絕對值不等式組,求出每個不等式組的解集,再取并集即得所求.(2)原命題等價于-2-x≤a≤2-x在[1,2]上恒成立,由此求得求a的取值范圍試題解析:(1)當a=-3時,f(x)=當x≤2時,由f(x)≥3得-2x+5≥3,解得x≤1;當2<x<3時,f(x)≥3無解;當x≥3時,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集為{x|x≤1或x≥4}.6分(2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|.當x∈[1,2]時,|x-4|-|x-2|≥|x+a|(4-x)-(2-x)≥|x+a|-2-a≤x≤2-a,由條件得-2-a≤1且2-a≥2,解得-3≤a≤0,故滿足條件的實數(shù)a的取值范圍為[-3,0].考點:絕對值不等式的解法;帶絕對值的函數(shù)20、(1);(2)【解析】
(1)利用分離參數(shù),并構(gòu)造新的函數(shù),利用導數(shù)判斷的單調(diào)性,并求最值,可得結(jié)果.(2)利用對的分類討論,可得,然后判斷函數(shù)單調(diào)性以及根據(jù)零點存在性定理,可得結(jié)果.【詳解】(1)由,得,令,當時,,,;當時,,,,∴函數(shù)在上遞減,在上遞增,,,∴實數(shù)的取值范圍是(2)①由(1)得當時,,,,函數(shù)在內(nèi)恰有一個零點,符合題意②當時,i.若,,,故函數(shù)在內(nèi)無零點ii.若,,,,不是函數(shù)的零點;iii.若時,,故只考慮函數(shù)在的零點,,若時,,∴函數(shù)在上單調(diào)遞增,,,∴函數(shù)在上恰有一個零點若時,,∴函數(shù)在上單調(diào)遞減,,∴函數(shù)在上無零點,若時,,,∴函數(shù)在上遞減,在上遞增,要使在上恰有一個零點,只需,.綜上所述,實數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030醫(yī)療AI輔助診斷系統(tǒng)臨床接受度與商業(yè)模式驗證分析報告
- 2025-2030匈牙利金融科技區(qū)塊鏈技術(shù)行業(yè)市場供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030匈牙利機械制造業(yè)技術(shù)發(fā)展現(xiàn)狀及產(chǎn)品創(chuàng)新分析研究報告
- 2025-2030匈牙利農(nóng)業(yè)現(xiàn)代化行業(yè)市場現(xiàn)存供給最佳需求環(huán)境保護管理企業(yè)全球化報告
- 2025-2030動物醫(yī)療行業(yè)市場供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030動植物保護行業(yè)市場深度調(diào)研及發(fā)展趨勢和前景預測研究報告
- 2025-2030初級農(nóng)產(chǎn)品加工技術(shù)創(chuàng)新與提高產(chǎn)品附加值市場前景評估
- 2025-2030分析評估規(guī)劃報告飲料行業(yè)市場現(xiàn)狀研究
- 2025-2030出行交通行業(yè)發(fā)展現(xiàn)狀分析及市場前景趨勢預測
- 2025-2030冶金設備制造行業(yè)市場分析報告與發(fā)展趨勢研究
- DB4114T 105-2019 黃河故道地區(qū)蘋果化學疏花疏果技術(shù)規(guī)程
- 如何高效向GPT提問
- JT-T-969-2015路面裂縫貼縫膠
- 無抗養(yǎng)殖模式可行性分析
- 《常見疾病康復》課程教學大綱
- 飼料廠HACCP計劃書
- PIPESIM軟件教程(軟件介紹及模型建立)
- xx大廈舊溴化鋰制冷機中央空調(diào)拆除施工方案
- “十佳和諧社區(qū)”創(chuàng)建先進事跡材料
- 單層工業(yè)廠房標底
- YY/T 0708-2009醫(yī)用電氣設備第1-4部分:安全通用要求并列標準:可編程醫(yī)用電氣系統(tǒng)
評論
0/150
提交評論