新疆哈密石油高級中學(xué)2024-2025學(xué)年高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第1頁
新疆哈密石油高級中學(xué)2024-2025學(xué)年高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第2頁
新疆哈密石油高級中學(xué)2024-2025學(xué)年高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第3頁
新疆哈密石油高級中學(xué)2024-2025學(xué)年高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第4頁
新疆哈密石油高級中學(xué)2024-2025學(xué)年高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

新疆哈密石油高級中學(xué)2024-2025學(xué)年高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從裝有3個白球,4個紅球的箱子中,隨機取出了3個球,恰好是2個白球,1個紅球的概率是()A. B. C. D.2.若,則等于()A. B. C. D.3.在如圖所示的“莖葉圖”表示的數(shù)據(jù)中,眾數(shù)和中位數(shù)分別().A.23與26 B.31與26 C.24與30 D.26與304.若復(fù)數(shù)是純虛數(shù),則實數(shù)的值為()A.1或2 B.或2 C. D.25.設(shè),,則“”是“”的()A.充要條件 B.充分而不必要條件 C.必要而不充分條件 D.既不充分也不必要條件6.已知拋物線,過其焦點且斜率為1的直線交拋物線于兩點,若線段的中點的縱坐標(biāo)為2,則該拋物線的準(zhǔn)線方程為A. B.C. D.7.在復(fù)平面上,復(fù)數(shù)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.集合,則()A. B. C. D.9.已知曲線在點處的切線平行于直線,那么點的坐標(biāo)為()A.或 B.或C. D.10.設(shè)全集,集合,,則()A. B. C. D.11.設(shè)兩個正態(tài)分布和的密度函數(shù)圖像如圖所示.則有()A.B.C.D.12.已知函數(shù),若,,,則,,的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的零點,則整數(shù)的值為______.14.設(shè)函數(shù).若為奇函數(shù),則曲線在點處的切線方程為___________.15.命題“使得”是______命題.(選填“真”或“假”)16.已知點在函數(shù)的圖象上,點,在函數(shù)的圖象上,若是以為直角頂點的等腰直角三角形,且點,的縱坐標(biāo)相同,則點的橫坐標(biāo)的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,是邊長為2的正方形,平面平面,直線與平面所成的角為,.(1)若,分別為,的中點,求證:直線平面;(2)求二面角的正弦值.18.(12分)已知橢圓C:的離心率為,且過點.求橢圓的標(biāo)準(zhǔn)方程;設(shè)直線l經(jīng)過點且與橢圓C交于不同的兩點M,N試問:在x軸上是否存在點Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點Q的坐標(biāo)及定值,若不存在,請說明理由.19.(12分)證明:當(dāng)時,.20.(12分)設(shè)命題函數(shù)的值域為;命題對一切實數(shù)恒成立,若命題“”為假命題,求實數(shù)的取值范圍.21.(12分)選修4—5:不等式選講設(shè)函數(shù).(1)若,求不等式的解集;(2)若關(guān)于的不等式恒成立,求的取值范圍.22.(10分)平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分析:根據(jù)古典概型計算恰好是2個白球1個紅球的概率.詳解:由題得恰好是2個白球1個紅球的概率為.故答案為:C.點睛:(1)本題主要考查古典概型,意在考查學(xué)生對這些知識的掌握水平.(2)古典概型的解題步驟:①求出試驗的總的基本事件數(shù);②求出事件A所包含的基本事件數(shù);③代公式=.2、D【解析】

中最大的數(shù)為,包含個數(shù)據(jù),且個數(shù)據(jù)是連續(xù)的正整數(shù),由此可得到的表示.【詳解】因為,所以表示從連乘到,一共是個正整數(shù)連乘,所以.故選:D.本題考查排列數(shù)的表示,難度較易.注意公式:的運用.3、B【解析】

根據(jù)莖葉圖的數(shù)據(jù),結(jié)合眾數(shù)與中位數(shù)的概念,即可求解,得到答案.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),可得眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),即眾數(shù)為,又由中位數(shù)的定義,可得數(shù)據(jù)的中位數(shù)為,故選B.本題主要考查了莖葉圖的應(yīng)用,其中解答中正確讀取莖葉圖的數(shù)據(jù),以及熟記眾數(shù)、中位數(shù)的概念是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、C【解析】

根據(jù)純虛數(shù)的定義可得2m2﹣3m﹣2=0且m2﹣3m+2≠0然后求解.【詳解】∵復(fù)數(shù)z=(2m2﹣3m﹣2)+(m2﹣3m+2)i是純虛數(shù)∴2m2﹣3m﹣2=0且m2﹣3m+2≠0∴m故選C.本題主要考查了純虛數(shù)的概念,解題的關(guān)鍵是要注意m2﹣3m+2≠0,屬于基礎(chǔ)題.5、C【解析】不能推出,反過來,若則成立,故為必要不充分條件.6、B【解析】∵y2=2px的焦點坐標(biāo)為,∴過焦點且斜率為1的直線方程為y=x-,即x=y+,將其代入y2=2px得y2=2py+p2,即y2-2py-p2=0.設(shè)A(x1,y1),B(x2,y2),則y1+y2=2p,∴=p=2,∴拋物線的方程為y2=4x,其準(zhǔn)線方程為x=-1.故選B.7、D【解析】

直接把給出的復(fù)數(shù)寫出代數(shù)形式,得到對應(yīng)的點的坐標(biāo),則答案可求.【詳解】由題意,復(fù)數(shù),所以復(fù)數(shù)對應(yīng)的點的坐標(biāo)為位于第一象限,故選A.本題主要考查了復(fù)數(shù)的代數(shù)表示,以及復(fù)數(shù)的幾何意義的應(yīng)用,其中解答中熟記復(fù)數(shù)的代數(shù)形式和復(fù)數(shù)的表示是解答本題的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、B【解析】,,故選B.9、B【解析】分析:設(shè)的坐標(biāo)為,則,求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由兩直線平行的條件可得的方程,求得的值從而可得結(jié)果.詳解:設(shè)的坐標(biāo)為,則,的導(dǎo)數(shù)為,在點處的切線斜率為,由切線平行于直線,可得,解得,即有或,故選B.點睛:本題考查導(dǎo)數(shù)的運用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點處的導(dǎo)數(shù)即為曲線在該點處的切線斜率,考查兩直線平行的條件:斜率相等,屬于基礎(chǔ)題.10、B【解析】

求得,即可求得,再求得,利用交集運算得解.【詳解】由得:或,所以,所以由可得:或所以所以故選:B本題主要考查了對數(shù)函數(shù)的性質(zhì),還考查了補集、交集的運算,屬于基礎(chǔ)題.11、A【解析】根據(jù)正態(tài)分布函數(shù)的性質(zhì):正態(tài)分布曲線是一條關(guān)于對稱,在處取得最大值的連續(xù)鐘形曲線;越大,曲線的最高點越底且彎曲較平緩;反過來,越小,曲線的最高點越高且彎曲較陡峭,選A.12、D【解析】

可以得出,從而得出c<a,同樣的方法得出a<b,從而得出a,b,c的大小關(guān)系.【詳解】,,根據(jù)對數(shù)函數(shù)的單調(diào)性得到a>c,,又因為,,再由對數(shù)函數(shù)的單調(diào)性得到a<b,∴c<a,且a<b;∴c<a<b.故選D.考查對數(shù)的運算性質(zhì),對數(shù)函數(shù)的單調(diào)性.比較兩數(shù)的大小常見方法有:做差和0比較,做商和1比較,或者構(gòu)造函數(shù)利用函數(shù)的單調(diào)性得到結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】

根據(jù)函數(shù)單調(diào)性可知若存在零點則零點唯一,由零點存在定理可判斷出零點所在區(qū)間,從而求得結(jié)果.【詳解】由題意知:在上單調(diào)遞增若存在零點,則存在唯一一個零點又,由零點存在定理可知:,則本題正確結(jié)果:本題考查零點存在定理的應(yīng)用,屬于基礎(chǔ)題.14、【解析】

首先根據(jù)奇函數(shù)的定義,得到,即,從而確定出函數(shù)的解析式,之后對函數(shù)求導(dǎo),結(jié)合導(dǎo)數(shù)的幾何意義,求得對應(yīng)切線的斜率,應(yīng)用點斜式寫出直線的方程,最后整理成一般式,得到結(jié)果.【詳解】因為函數(shù)是奇函數(shù),所以,從而得到,即,所以,所以,所以切點坐標(biāo)是,因為,所以,所以曲線在點處的切線方程為,故答案是.該題考查的是有關(guān)函數(shù)圖象在某點處的切線問題,涉及到的知識點有奇函數(shù)的定義,導(dǎo)數(shù)的幾何意義,屬于簡單題目.15、真.【解析】分析:存在命題只需驗證存在即可.詳解:由題可知:令x=0,則符合題意故原命題是真命題.點睛:考查存在性命題的真假判斷,屬于基礎(chǔ)題.16、【解析】

根據(jù)題意,設(shè)B的坐標(biāo)為,結(jié)合題意分析可得A、C的坐標(biāo),進(jìn)而可得的直角邊長為2,據(jù)此可得,即,計算可得m的值,即可得答案.【詳解】根據(jù)題意,設(shè)B的坐標(biāo)為,如圖:

又由是以A為直角頂點的等腰直角三角形且點A,C的縱坐標(biāo)相同,

則A、B的橫坐標(biāo)相同,故A的坐標(biāo)為,C的坐標(biāo)為,

等腰直角三角形的直角邊長為2,

則有,即,

解可得,故答案為:本題主要考查指數(shù)函數(shù)性質(zhì)以及函數(shù)值的計算,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】

(1)由平面平面得到平面,從而,根據(jù),得到平面,得到,結(jié)合,得到平面;(2)為原點,建立空間坐標(biāo)系,得到平面和平面的法向量,利用向量的夾角公式,得到法向量之間的夾角余弦,從而得到二面角的正弦值.【詳解】(1)證明:∵平面平面,平面平面,,平面,∴平面,則為直線與平面所成的角,為,∴,而平面,∴又,為的中點,∴,平面,則平面,而平面∴,又,分別為,的中點,則,正方形中,,∴,又平面,,∴直線平面;(2)解:以為坐標(biāo)原點,分別以,所在直線為,軸,過作的平行線為軸建立如圖所示空間直角坐標(biāo)系,則,,,,,,,設(shè)平面的法向量為,則,即,取,得;設(shè)平面的法向量為,則,即,取,得.∴.∴二面角的正弦值為.本題考查面面垂直的性質(zhì),線面垂直的性質(zhì)和判定,利用空間向量求二面角的正弦值,屬于中檔題.18、(1);(2)見解析【解析】

由橢圓C:的離心率為,且過點,列方程給,求出,,由此能求出橢圓的標(biāo)準(zhǔn)方程;假設(shè)存在滿足條件的點,設(shè)直線l的方程為,由,得,由此利用韋達(dá)定理、直線的斜率,結(jié)合已知條件能求出在x軸上存在點,使得直線QM與直線QN的斜率的和為定值1.【詳解】橢圓C:的離心率為,且過點.,解得,,橢圓的標(biāo)準(zhǔn)方程為.假設(shè)存在滿足條件的點,當(dāng)直線l與x軸垂直時,它與橢圓只有一個交點,不滿足題意,直線l的斜率k存在,設(shè)直線l的方程為,由,得,設(shè),,則,,,要使對任意實數(shù)k,為定值,則只有,此時,,在x軸上存在點,使得直線QM與直線QN的斜率的和為定值1.本題考查橢圓方程的求法,考查滿足兩直線的斜率和為定值的點是否存在的判斷與求法,考查橢圓、直線方程、斜率、韋達(dá)定理等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.本題主要考查直線與圓錐曲線位置關(guān)系,所使用方法為韋達(dá)定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉(zhuǎn)化為方程組關(guān)系問題,最終轉(zhuǎn)化為一元二次方程問題,故用韋達(dá)定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達(dá)定理直接解決,但應(yīng)注意不要忽視判別式的作用.19、見解析【解析】分析:(1)記,則,分x∈與x∈兩類討論,可證得當(dāng)時,,即記,同理可證當(dāng)時,,二者結(jié)合即可證得結(jié)論;詳解:記記,則,當(dāng)x∈時,F(xiàn)′(x)>0,F(xiàn)(x)單調(diào)遞增;當(dāng)x∈時,F(xiàn)′(x)<0,F(xiàn)(x)單調(diào)遞減.又F(0)=0,F(xiàn)(1)>0,所以當(dāng)x∈[0,1]時,F(xiàn)(x)≥0,即sinx≥x.記,則.當(dāng)時,H′(x)≤0,H(x)單調(diào)遞減.所以H(x)≤H(0)=0,即.綜上,,.點睛:本題考查不等式的證明,突出考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及函數(shù)恒成立問題,考查分類討論思想與等價轉(zhuǎn)化思想的綜合應(yīng)用,屬于難題.20、【解析】試題分析:分別求出命題,成立的等價條件,利用且為假.確定實數(shù)的取值范圍.試題解析:真時,合題意.時,.時,為真命題.真時:令,故在恒成立時,為真命題.為真時,.為假命題時,.考點:復(fù)合命題的真假.21、(1);(2).【解析】分析:(1)對分三種情況討論,分別去掉絕對值符號,然后求解不等式組,再求并集即可得不等式的解集;(2)因為,所以,可得,從而可得結(jié)果.詳解:(1)當(dāng)時,.由,得.①當(dāng)時,不等式化為,即.所以,原不等式的解為.②當(dāng)時,不等式化為,即.所以,原不等式無解.③當(dāng)時,不等式化為,即.所以,原不等式的解為.綜上,原不等式的解為.(2)因為,所以,所以,解得或,即的取值范圍為.點睛:絕對值不等式的常見解法:①利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;②利用“零點分段法”求解,體現(xiàn)了分類討論的思想;③通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論