版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
光在材料中的傳播
Theequationsofopticsare
Maxwell’sequations.whereistheelectricfield,isthemagneticfield,risthechargedensity,eisthepermittivity,andmisthepermeabilityofthemedium.Maxwell’sequationssimplifytothewaveequationfortheelectricfield.whichhasasimplesine-wavesolution:LightisanElectromagneticWaveElectric(E)andmagnetic(B)fieldsareinphase.Theelectricfield,themagneticfield,andthepropagationdirectionareallperpendicular.
Whatisawave?Awaveisanythingthatmoves.Todisplaceanyfunctionf(x)totheright,justchangeitsargumentfromxtox-a,whereaisapositivenumber.Ifweleta=vt,wherevispositiveandtistime,thenthedisplacementwillincreasewithtime.Sorepresentsarightward,orforward,propagatingwave.Similarly,representsaleftward,orbackward,propagatingwave.v
willbethevelocityofthewave.f(x)f(x-3)f(x-2)f(x-1)x0123f(x-vt)f(x+vt)Theone-dimensionalwaveequationWe’llderivethewaveequationfromMaxwell’sequations.Hereitisinitsone-dimensionalformforscalar(i.e.,non-vector)functions,f:Lightwaves(actuallytheelectricfieldsoflightwaves)willbeasolutiontothisequation.Andvwillbethevelocityoflight.Thesolutiontotheone-dimensionalwaveequationwheref(u)canbeanytwice-differentiablefunction.Thewaveequationhasthesimplesolution:Proofthatf
(x
±
vt)solvesthewaveequationWritef
(x
±
vt)asf
(u),whereu=x±vt.Soand
Now,usethechainrule:
SoTandT
Substitutingintothewaveequation:QEDThe1DwaveequationforlightwavesWe’llusecosine-andsine-wavesolutions:
or
where:whereEisthelightelectricfieldAsimplerequationforaharmonicwave:
E(x,t)=Acos[(kx–wt)–q]Usethetrigonometricidentity:
cos(z–y)=cos(z)cos(y)+sin(z)sin(y)wherez=k
x–w
tandy=qtoobtain:
E(x,t)=Acos(kx–wt)cos(q)+Asin(kx–wt)sin(q)whichisthesameresultasbefore,
aslongas:
A
cos(q)=BandAsin(q)=CForsimplicity,we’lljustusetheforward-propagatingwave.Definitions:AmplitudeandAbsolutephase
E(x,t)=A
cos[(kx–wt)–q]
A=Amplitudeq=Absolutephase(orinitialphase)DefinitionsSpatialquantities:Temporalquantities:ThePhaseVelocityHowfastisthewavetraveling?Velocityisareferencedistancedividedbyareferencetime.Thephasevelocityisthewavelength/period:
v=l/tIntermsofthek-vector,k=2p/l,andtheangularfrequency,w=2p/t,thisis: v=w/k
ThePhaseofaWaveThisformulaisusefulwhenthewaveisreallycomplicated.Thephaseiseverythinginsidethecosine.
E(t)=A
cos(j),wherej=kx–wt–qIntermsofthephase,
w=–?j/?t
k=?j/?xAnd
–?j/?t
v=–––––––
?j/?xComplexnumbersSo,insteadofusinganorderedpair,(x,y),wewrite:
P=x+i
y
=A
cos(j)+iAsin(j)wherei=(-1)1/2
Considerapoint,P
=(x,y),ona2DCartesiangrid.Letthex-coordinatebetherealpartandthey-coordinatetheimaginarypartofacomplexnumber.Euler'sFormula
exp(ij)=cos(j)+isin(j)sothepoint,
P=Acos(j)+iAsin(j),canbewritten:
P=Aexp(ij)where
A=Amplitude
j=PhaseProofofEuler'sFormulaUseTaylorSeries:exp(ij)=cos(j)+isin(j)Ifwesubstitute
x=ijintoexp(x),then:ComplexnumbertheoremsMorecomplexnumbertheoremsAnycomplexnumber,z,canbewritten:
z=Re{z}+iIm{z}So
Re{z}=1/2(z+z*)and
Im{z}
=1/2i(z–z*)where
z*isthecomplexconjugateofz(i?–i)The"magnitude,"|z|,ofacomplexnumberis:
|z|2=zz*=Re{z}2+Im{z}2Toconvertzintopolarform,Aexp(ij):
A2=Re{z}2+Im{z}2
tan(j)=Im{z}/Re{z}Wecanalsodifferentiateexp(ikx)asiftheargumentwerereal.WavesusingcomplexnumbersTheelectricfieldofalightwavecanbewritten:
E(x,t)=Acos(kx–wt–q)Sinceexp(ij)=cos(j)+isin(j),
E(x,t)canalsobewritten:
E(x,t)=Re{Aexp[i(kx–wt–q)]}or
E(x,t)=1/2Aexp[i(kx–wt–q)]+c.c.where"+c.c."means"plusthecomplexconjugateofeverythingbeforetheplussign."Weoftenwritetheseexpressionswithoutthe?,Re,or+c.c.WavesusingcomplexamplitudesWecanlettheamplitudebecomplex:
wherewe'veseparatedtheconstantstufffromtherapidlychangingstuff.Theresulting"complexamplitude"is:
So:HowdoyouknowifE0isrealorcomplex? Sometimespeopleusethe"~",butnotalways. Soalwaysassumeit'scomplex.Addingwavesofthesamefrequency,butdifferentinitialphase,yieldsawaveofthesamefrequency.Thisisn'tsoobvioususingtrigonometricfunctions,butit'seasywithcomplexexponentials:whereallinitialphasesarelumpedintoE1,E2,andE3.The3Dwaveequationfortheelectricfieldanditssolution!or
whichhasthesolution:
where
andAlightwavecanpropagateinanydirectioninspace.Sowemustallowthespacederivativetobe3D:iscalleda“planewave.”Aplanewave'swave-frontsareequa
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 律師培訓(xùn)管理制度
- 供熱學(xué)習(xí)培訓(xùn)管理制度
- 加油站危廢培訓(xùn)制度
- 2025重慶兩江新區(qū)人才發(fā)展集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解(3卷)
- 培訓(xùn)機(jī)構(gòu)服務(wù)管理制度
- 2025貴州遵義規(guī)劃勘測(cè)設(shè)計(jì)集團(tuán)有限公司招聘工作人員筆試筆試歷年參考題庫(kù)附帶答案詳解
- 2025貴州納雍縣志宏就業(yè)扶貧勞務(wù)有限公司招聘10人筆試歷年參考題庫(kù)附帶答案詳解
- 2025貴州畢節(jié)市融資擔(dān)保集團(tuán)有限公司及下屬子公司招聘12名工作人員及第二次人員筆試歷年參考題庫(kù)附帶答案詳解
- 2025福建莆田市數(shù)字集團(tuán)有限公司招聘企業(yè)員工總及擬人員筆試歷年參考題庫(kù)附帶答案詳解
- 2025福建省龍巖高速公路有限公司招聘1人筆試歷年參考題庫(kù)附帶答案詳解
- 《關(guān)鍵軟硬件自主可控產(chǎn)品名錄》
- 2025年濟(jì)南市九年級(jí)中考語(yǔ)文試題卷附答案解析
- 信息安全風(fēng)險(xiǎn)評(píng)估及應(yīng)對(duì)措施
- 紅藍(lán)黃光治療皮膚病臨床應(yīng)用專家共識(shí)(2025版)解讀
- 錄音棚項(xiàng)目可行性研究報(bào)告
- 園藝苗木種植管理技術(shù)培訓(xùn)教材
- 美國(guó)AHA ACC高血壓管理指南(2025年)修訂要點(diǎn)解讀課件
- (標(biāo)準(zhǔn))警局賠償協(xié)議書
- GB/T 20921-2025機(jī)器狀態(tài)監(jiān)測(cè)與診斷詞匯
- 人教版英語(yǔ)九年級(jí)全一冊(cè)單詞表
- 護(hù)工培訓(xùn)課件內(nèi)容
評(píng)論
0/150
提交評(píng)論