內(nèi)蒙古工業(yè)大學(xué)《Spark大數(shù)據(jù)技術(shù)與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
內(nèi)蒙古工業(yè)大學(xué)《Spark大數(shù)據(jù)技術(shù)與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
內(nèi)蒙古工業(yè)大學(xué)《Spark大數(shù)據(jù)技術(shù)與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
內(nèi)蒙古工業(yè)大學(xué)《Spark大數(shù)據(jù)技術(shù)與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁內(nèi)蒙古工業(yè)大學(xué)《Spark大數(shù)據(jù)技術(shù)與應(yīng)用》

2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)可視化是一種重要的手段。以下關(guān)于數(shù)據(jù)可視化的描述中,錯誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以通過圖表、圖形等形式展示數(shù)據(jù)的特征和趨勢C.數(shù)據(jù)可視化只適用于大型數(shù)據(jù)集,對于小數(shù)據(jù)集沒有太大作用D.數(shù)據(jù)可視化可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性2、在數(shù)據(jù)分析中,抽樣是獲取代表性數(shù)據(jù)的常用方法。假設(shè)要從一個大型數(shù)據(jù)庫中抽取樣本以估計總體特征,以下關(guān)于抽樣方法選擇的描述,正確的是:()A.采用簡單隨機抽樣,不考慮總體的結(jié)構(gòu)和特征B.隨意選擇抽樣方法,不考慮樣本的代表性和誤差C.根據(jù)總體的特點和研究目的,選擇合適的抽樣方法,如分層抽樣、系統(tǒng)抽樣等,并控制抽樣誤差D.為了方便,抽取少量樣本,不考慮樣本量對結(jié)果的影響3、在進行數(shù)據(jù)分析時,若要研究兩個變量之間的線性關(guān)系,通常會使用哪種統(tǒng)計方法?()A.方差分析B.回歸分析C.因子分析D.聚類分析4、在數(shù)據(jù)分析中,以下哪種抽樣方法能夠保證樣本對總體具有較好的代表性,同時又能降低抽樣誤差?()A.簡單隨機抽樣B.分層抽樣C.整群抽樣D.系統(tǒng)抽樣5、假設(shè)要分析一個城市的交通流量數(shù)據(jù),以優(yōu)化交通信號燈的設(shè)置和道路規(guī)劃。數(shù)據(jù)包括不同時間段、不同路段的車流量、車速等信息。為了找到交通擁堵的規(guī)律和原因,以下哪個分析角度可能是關(guān)鍵的?()A.時空分析B.基于車型的分類分析C.只關(guān)注高峰時段的分析D.隨機抽樣分析6、在評估數(shù)據(jù)分析模型的性能時,以下指標(biāo)中,不能用于分類問題的是:()A.準(zhǔn)確率B.均方誤差C.召回率D.F1值7、在數(shù)據(jù)分析的過程中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯誤數(shù)據(jù)和重復(fù)記錄等問題。為了獲得高質(zhì)量的數(shù)據(jù)用于后續(xù)分析,以下哪種數(shù)據(jù)清洗方法是首先應(yīng)該考慮的?()A.直接刪除包含缺失值或錯誤數(shù)據(jù)的記錄B.采用均值或中位數(shù)填充缺失值C.通過數(shù)據(jù)驗證規(guī)則修正錯誤數(shù)據(jù)D.利用機器學(xué)習(xí)算法預(yù)測缺失值8、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘是一種高級的技術(shù)。以下關(guān)于數(shù)據(jù)挖掘的描述中,錯誤的是?()A.數(shù)據(jù)挖掘可以從大量的數(shù)據(jù)中發(fā)現(xiàn)隱藏的模式和規(guī)律B.數(shù)據(jù)挖掘可以使用機器學(xué)習(xí)算法進行數(shù)據(jù)的分類、聚類和預(yù)測C.數(shù)據(jù)挖掘需要專業(yè)的技術(shù)和知識,對于普通用戶來說難以掌握D.數(shù)據(jù)挖掘的結(jié)果一定是準(zhǔn)確無誤的,可以直接用于決策9、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的算法有很多,其中決策樹是一種常用的算法。以下關(guān)于決策樹的描述中,錯誤的是?()A.決策樹可以用于分類和回歸問題B.決策樹的構(gòu)建過程是自頂向下的C.決策樹的葉子節(jié)點表示最終的分類結(jié)果或預(yù)測值D.決策樹的算法復(fù)雜度較低,適用于大規(guī)模數(shù)據(jù)集10、在進行數(shù)據(jù)分析時,選擇合適的統(tǒng)計指標(biāo)來描述數(shù)據(jù)特征是很重要的。假設(shè)我們有一組學(xué)生的考試成績數(shù)據(jù),想要了解成績的分布情況,以下哪個統(tǒng)計指標(biāo)能最有效地反映數(shù)據(jù)的離散程度?()A.均值B.中位數(shù)C.標(biāo)準(zhǔn)差D.眾數(shù)11、在數(shù)據(jù)庫管理中,當(dāng)多個用戶同時對同一數(shù)據(jù)表進行操作時,為了保證數(shù)據(jù)的一致性,通常會采用哪種技術(shù)?()A.數(shù)據(jù)備份B.事務(wù)處理C.數(shù)據(jù)加密D.索引優(yōu)化12、在數(shù)據(jù)分析中,建立預(yù)測模型是常見的任務(wù)之一。假設(shè)我們要預(yù)測下個月的產(chǎn)品銷售量。以下關(guān)于預(yù)測模型的描述,哪一項是不準(zhǔn)確的?()A.線性回歸模型假設(shè)自變量和因變量之間存在線性關(guān)系,適用于簡單的預(yù)測問題B.決策樹模型易于理解和解釋,但可能會出現(xiàn)過擬合的問題C.隨機森林是由多個決策樹組成的集成模型,性能通常優(yōu)于單個決策樹D.預(yù)測模型一旦建立,就不需要根據(jù)新的數(shù)據(jù)進行更新和調(diào)整13、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)我們要展示不同地區(qū)的銷售額及其隨時間的變化趨勢,以下哪種可視化圖表可能是最適合的?()A.餅圖B.柱狀圖C.折線圖D.箱線圖14、在數(shù)據(jù)分析中,數(shù)據(jù)的可解釋性對于決策支持很重要。假設(shè)要向管理層解釋一個預(yù)測銷售趨勢的模型結(jié)果,以下關(guān)于數(shù)據(jù)可解釋性方法的描述,正確的是:()A.使用復(fù)雜的數(shù)學(xué)公式和技術(shù)術(shù)語,讓管理層難以理解B.不提供任何解釋,讓管理層自行判斷C.采用簡單直觀的圖表、案例分析和通俗易懂的語言,解釋模型的輸入、輸出和決策依據(jù),幫助管理層做出明智的決策D.認(rèn)為數(shù)據(jù)可解釋性不重要,只要模型預(yù)測準(zhǔn)確就行15、數(shù)據(jù)分析在交通領(lǐng)域的應(yīng)用日益重要。以下關(guān)于數(shù)據(jù)分析在交通流量預(yù)測中的作用,不準(zhǔn)確的是()A.可以基于歷史交通數(shù)據(jù)和實時監(jiān)測數(shù)據(jù),預(yù)測未來一段時間內(nèi)的交通流量變化B.幫助交通管理部門優(yōu)化信號燈設(shè)置,緩解交通擁堵C.數(shù)據(jù)分析能夠為智能導(dǎo)航系統(tǒng)提供實時的路況信息,為駕駛員規(guī)劃最優(yōu)路線D.數(shù)據(jù)分析在交通流量預(yù)測中的作用有限,無法應(yīng)對突發(fā)的交通事件和特殊情況16、在數(shù)據(jù)分析的探索性數(shù)據(jù)分析(EDA)中,以下不屬于常用方法的是()A.繪制箱線圖B.進行假設(shè)檢驗C.計算數(shù)據(jù)的描述性統(tǒng)計量D.觀察數(shù)據(jù)的分布17、在進行數(shù)據(jù)分析以評估一個新的市場營銷活動的效果時,比如分析活動前后的客戶流量、購買轉(zhuǎn)化率和客戶滿意度等指標(biāo)的變化。由于活動期間可能受到其他外部因素的干擾,為了準(zhǔn)確評估活動的貢獻,以下哪種方法可能是合適的?()A.建立對照組進行對比B.只關(guān)注活動期間的數(shù)據(jù)C.忽略外部因素的影響D.憑經(jīng)驗主觀判斷18、在數(shù)據(jù)庫設(shè)計中,若要存儲學(xué)生的課程成績,以下哪種數(shù)據(jù)類型較為合適?()A.整數(shù)型B.浮點型C.字符型D.日期型19、數(shù)據(jù)分析中的特征工程旨在從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要分析股票市場數(shù)據(jù),需要從歷史價格、成交量等原始數(shù)據(jù)中構(gòu)建有效的特征。以下哪種特征構(gòu)建方法在股票數(shù)據(jù)分析中可能最為有效?()A.基于時間序列的特征提取B.基于統(tǒng)計的特征構(gòu)建C.基于主成分分析的特征降維D.基于深度學(xué)習(xí)的自動特征學(xué)習(xí)20、數(shù)據(jù)分析中,數(shù)據(jù)可視化的作用不僅僅是美觀。以下關(guān)于數(shù)據(jù)可視化作用的說法中,錯誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢B.數(shù)據(jù)可視化可以提高數(shù)據(jù)分析的效率,減少分析時間和成本C.數(shù)據(jù)可視化可以增強數(shù)據(jù)的說服力和影響力,使分析結(jié)果更容易被接受D.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)分析報告看起來更漂亮,對分析結(jié)果沒有實質(zhì)性的幫助21、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的步驟有很多,其中數(shù)據(jù)清理是一個重要的步驟。以下關(guān)于數(shù)據(jù)清理的描述中,錯誤的是?()A.數(shù)據(jù)清理可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)清理可以填補數(shù)據(jù)中的缺失值C.數(shù)據(jù)清理可以統(tǒng)一數(shù)據(jù)的格式和單位D.數(shù)據(jù)清理可以增加數(shù)據(jù)的數(shù)量和多樣性22、假設(shè)要分析電商平臺上的用戶購買行為隨時間的變化,以下關(guān)于時間序列分析的描述,正確的是:()A.不考慮季節(jié)性因素,直接進行時間序列建模B.時間序列分解可以將數(shù)據(jù)分解為趨勢、季節(jié)性和隨機成分,有助于深入分析C.短期的時間序列數(shù)據(jù)比長期的數(shù)據(jù)更有分析價值D.時間序列分析只能用于預(yù)測未來,不能用于解釋過去的行為模式23、當(dāng)分析一組時間序列數(shù)據(jù)時,發(fā)現(xiàn)數(shù)據(jù)存在明顯的季節(jié)性波動。為了消除季節(jié)性影響,應(yīng)該采用哪種方法?()A.移動平均B.指數(shù)平滑C.季節(jié)指數(shù)法D.線性回歸24、在數(shù)據(jù)分析的特征工程中,假設(shè)要從原始數(shù)據(jù)中提取有意義的特征以提高模型的性能。原始數(shù)據(jù)包含大量的文本和數(shù)值信息。以下哪種特征提取方法可能更有助于提升模型的準(zhǔn)確性?()A.詞袋模型,將文本轉(zhuǎn)換為向量B.主成分分析,降低數(shù)據(jù)維度C.特征選擇,挑選重要的特征D.不進行特征工程,直接使用原始數(shù)據(jù)25、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫的建設(shè)需要多方面的專業(yè)知識。以下關(guān)于數(shù)據(jù)倉庫建設(shè)所需專業(yè)知識的說法中,錯誤的是?()A.數(shù)據(jù)倉庫建設(shè)需要數(shù)據(jù)庫管理、數(shù)據(jù)建模、數(shù)據(jù)分析等方面的專業(yè)知識B.數(shù)據(jù)倉庫建設(shè)需要了解業(yè)務(wù)需求和數(shù)據(jù)特點,以便設(shè)計出合適的架構(gòu)和模型C.數(shù)據(jù)倉庫建設(shè)只需要技術(shù)人員參與,業(yè)務(wù)人員不需要了解數(shù)據(jù)倉庫的建設(shè)過程D.數(shù)據(jù)倉庫建設(shè)需要不斷學(xué)習(xí)和掌握新的技術(shù)和方法,以適應(yīng)不斷變化的需求26、在處理大數(shù)據(jù)集時,分布式計算框架可以提高計算效率。假設(shè)要對海量的用戶行為數(shù)據(jù)進行分析,以下關(guān)于分布式計算框架選擇的描述,正確的是:()A.不考慮數(shù)據(jù)規(guī)模和計算需求,隨意選擇一個分布式框架B.選擇一個復(fù)雜但功能強大的分布式框架,不考慮團隊的技術(shù)能力和維護成本C.根據(jù)數(shù)據(jù)特點、計算任務(wù)和團隊技術(shù)水平,選擇合適的分布式計算框架,如Hadoop、Spark等,并進行合理的配置和優(yōu)化D.認(rèn)為分布式計算框架可以解決所有性能問題,不關(guān)注數(shù)據(jù)的分區(qū)和并行處理策略27、假設(shè)我們要分析一個網(wǎng)站的用戶行為數(shù)據(jù),以下哪種方法可以用于識別用戶的訪問模式?()A.關(guān)聯(lián)規(guī)則挖掘B.分類算法C.聚類分析D.回歸分析28、在數(shù)據(jù)分析中,若要檢驗數(shù)據(jù)是否具有獨立性,應(yīng)使用哪種檢驗方法?()A.卡方檢驗B.F檢驗C.t檢驗D.秩和檢驗29、在數(shù)據(jù)分析中,對于一個包含多個變量的數(shù)據(jù)集,需要確定哪些變量對目標(biāo)變量的影響最大。假設(shè)變量之間存在復(fù)雜的非線性關(guān)系,以下哪種方法可能有助于進行變量篩選和特征工程?()A.逐步回歸B.隨機森林C.支持向量機D.以上都是30、對于一個包含多個變量的數(shù)據(jù)集,若要找出變量之間的潛在結(jié)構(gòu)關(guān)系,以下哪種方法較為有效?()A.主成分分析B.判別分析C.對應(yīng)分析D.典型相關(guān)分析二、論述題(本大題共5個小題,共25分)1、(本題5分)對于社交媒體的影響力評估,論述如何運用數(shù)據(jù)分析衡量用戶的影響力和傳播效果,為品牌推廣和社交營銷提供決策支持。2、(本題5分)對于電商平臺的用戶信用評估,論述如何運用數(shù)據(jù)分析構(gòu)建信用評估模型,防范信用風(fēng)險,促進交易安全。3、(本題5分)體育行業(yè)利用數(shù)據(jù)分析來評估運動員表現(xiàn)、制定訓(xùn)練計劃、預(yù)測比賽結(jié)果等。討論如何通過數(shù)據(jù)分析提升團隊和運動員的競技水平,以及如何將數(shù)據(jù)分析應(yīng)用于體育賽事的運營和觀眾體驗的優(yōu)化。4、(本題5分)分析在醫(yī)療數(shù)據(jù)的多模態(tài)融合中,如何整合圖像數(shù)據(jù)、文本數(shù)據(jù)和數(shù)值數(shù)據(jù)等,為疾病診斷和治療提供更全面的信息。5、(本題5分)隨著大數(shù)據(jù)技術(shù)的不斷發(fā)展,數(shù)據(jù)挖掘在市場營銷中的應(yīng)用越來越廣泛。請詳細論述數(shù)據(jù)挖掘如何幫助企業(yè)分析客戶行為、預(yù)測市場趨勢、優(yōu)化營銷策略,并結(jié)合實際案例說明數(shù)據(jù)挖掘在提升企業(yè)市場競爭力方面的重要作用。三、簡答題(本大題共5個小題,共25分)1、(本題5分)解釋什么是聯(lián)邦遷移學(xué)習(xí),說明其在跨機構(gòu)數(shù)據(jù)合作和模型遷移中的應(yīng)用和優(yōu)勢,并舉例分析。2、(本題5分)描述數(shù)據(jù)挖掘的概念和主要流程,包括數(shù)據(jù)預(yù)處理、挖掘算法選擇、結(jié)果評估等環(huán)節(jié),并解釋每個環(huán)節(jié)的關(guān)鍵要點和作用。3、(本題5分)在數(shù)據(jù)分析中,如何評估模型的泛化能力?請說明常見的評估方法和指標(biāo),并解釋如何通過交叉驗證等技術(shù)來提高模型的泛化能力。4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論