版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年四川省遂寧中學(xué)中考數(shù)學(xué)押題試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點(diǎn),以為圓心,為半徑畫弧,交于點(diǎn),則的長(zhǎng)為()A.3 B.4 C. D.52.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°3.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=04.某共享單車前a公里1元,超過a公里的,每公里2元,若要使使用該共享單車50%的人只花1元錢,a應(yīng)該要取什么數(shù)()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差5.計(jì)算4×(–9)的結(jié)果等于A.32 B.–32 C.36 D.–366.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.7.若x=-2是關(guān)于x的一元二次方程x2-ax+a2=0的一個(gè)根,則a的值為()A.1或4 B.-1或-4 C.-1或4 D.1或-48.如圖,在平面直角坐標(biāo)系中,半徑為2的圓P的圓心P的坐標(biāo)為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或59.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.50° C.60° D.30°10.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)211.下列運(yùn)算正確的是()A.a(chǎn)2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=612.一元二次方程x2+kx﹣3=0的一個(gè)根是x=1,則另一個(gè)根是()A.3 B.﹣1 C.﹣3 D.﹣2二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.太陽(yáng)半徑約為696000千米,數(shù)字696000用科學(xué)記數(shù)法表示為千米.14.如圖,一艘海輪位于燈塔P的北偏東方向60°,距離燈塔為4海里的點(diǎn)A處,如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長(zhǎng)_____海里.15.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點(diǎn),若點(diǎn)P是y軸上任意一點(diǎn),則△PAB的面積是_____.16.甲、乙兩個(gè)搬運(yùn)工搬運(yùn)某種貨物.已知乙比甲每小時(shí)多搬運(yùn)600kg,甲搬運(yùn)5000kg所用的時(shí)間與乙搬運(yùn)8000kg所用的時(shí)間相等.設(shè)甲每小時(shí)搬運(yùn)xkg貨物,則可列方程為_____.17.若將拋物線y=﹣4(x+2)2﹣3圖象向左平移5個(gè)單位,再向上平移3個(gè)單位得到的拋物線的頂點(diǎn)坐標(biāo)是_____.18.如圖,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=6x三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟.19.(6分)今年5月份,某校九年級(jí)學(xué)生參加了南寧市中考體育考試,為了了解該校九年級(jí)(1)班同學(xué)的中考體育情況,對(duì)全班學(xué)生的中考體育成績(jī)進(jìn)行了統(tǒng)計(jì),并繪制以下不完整的頻數(shù)分布表(圖11-1)和扇形統(tǒng)計(jì)圖(圖11-2),根據(jù)圖表中的信息解答下列問題:分組
分?jǐn)?shù)段(分)
頻數(shù)
A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學(xué)生人數(shù)和m的值;(2)直接學(xué)出該班學(xué)生的中考體育成績(jī)的中位數(shù)落在哪個(gè)分?jǐn)?shù)段;(3)該班中考體育成績(jī)滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級(jí)進(jìn)行經(jīng)驗(yàn)交流,請(qǐng)用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.20.(6分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長(zhǎng);(3)求sin∠EOB的值.21.(6分)如圖1,在正方形ABCD中,E是邊BC的中點(diǎn),F(xiàn)是CD上一點(diǎn),已知∠AEF=90°.(1)求證:;(2)平行四邊形ABCD中,E是邊BC上一點(diǎn),F(xiàn)是邊CD上一點(diǎn),∠AFE=∠ADC,∠AEF=90°.①如圖2,若∠AFE=45°,求的值;②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.22.(8分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側(cè)的兩點(diǎn),AC=DC,過點(diǎn)C與⊙O相切的直線CF交弦DB的延長(zhǎng)線于點(diǎn)E.(1)試判斷直線DE與CF的位置關(guān)系,并說(shuō)明理由;(2)若∠A=30°,AB=4,求的長(zhǎng).23.(8分)為響應(yīng)學(xué)校全面推進(jìn)書香校園建設(shè)的號(hào)召,班長(zhǎng)李青隨機(jī)調(diào)查了若干同學(xué)一周課外閱讀的時(shí)間(單位:小時(shí)),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(:,:,:,:),根據(jù)圖中信息,解答下列問題:(1)這項(xiàng)工作中被調(diào)查的總?cè)藬?shù)是多少?(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出表示組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù);(3)如果李青想從組的甲、乙、丙、丁四人中先后隨機(jī)選擇兩人做讀書心得發(fā)言代表,請(qǐng)用列表或畫樹狀圖的方法求出選中甲的概率.24.(10分)(8分)如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數(shù)的解析式;(1)求△OCD的面積.25.(10分)如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長(zhǎng)交⊙O于點(diǎn)D,連接BD交AE于點(diǎn)F,延長(zhǎng)AE至點(diǎn)C,使得FC=BC,連接BC.(1)求證:BC是⊙O的切線;(2)⊙O的半徑為5,tanA=,求FD的長(zhǎng).26.(12分)一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“美”、“麗”、“光”、“明”的四個(gè)小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.若從中任取一個(gè)球,求摸出球上的漢字剛好是“美”的概率;甲從中任取一球,不放回,再?gòu)闹腥稳∫磺颍?qǐng)用樹狀圖或列表法,求甲取出的兩個(gè)球上的漢字恰能組成“美麗”或“光明”的概率.27.(12分)甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時(shí)間x(分)之間的關(guān)系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達(dá)終點(diǎn)?
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
連接DF,在中,利用勾股定理求出CF的長(zhǎng)度,則EF的長(zhǎng)度可求.【詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.【點(diǎn)睛】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關(guān)鍵.2、C【解析】
根據(jù)非負(fù)數(shù)的性質(zhì)可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】由題意,得
cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故選C.3、D【解析】試題解析:含有兩個(gè)未知數(shù),不是整式方程,C沒有二次項(xiàng).故選D.點(diǎn)睛:一元二次方程需要滿足三個(gè)條件:含有一個(gè)未知數(shù),未知數(shù)的最高次數(shù)是2,整式方程.4、B【解析】解:根據(jù)中位數(shù)的意義,故只要知道中位數(shù)就可以了.故選B.5、D【解析】
根據(jù)有理數(shù)的乘法法則進(jìn)行計(jì)算即可.【詳解】故選:D.【點(diǎn)睛】考查有理數(shù)的乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘.6、B【解析】
如圖:過點(diǎn)E作HE⊥AD于點(diǎn)H,連接AE交GF于點(diǎn)N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長(zhǎng),HE的長(zhǎng),AE的長(zhǎng),
NE的長(zhǎng),EF的長(zhǎng),則可求sin∠AFG的值.【詳解】解:如圖:過點(diǎn)E作HE⊥AD于點(diǎn)H,連接AE交GF于點(diǎn)N,連接BD,BE.
∵四邊形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵點(diǎn)E是CD中點(diǎn)
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等邊三角形,且E是CD中點(diǎn)
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=由折疊性質(zhì)可得∠AFG=∠EFG,
∴sin∠EFG=sin∠AFG=,故選B.【點(diǎn)睛】本題考查了折疊問題,菱形的性質(zhì),勾股定理,添加恰當(dāng)?shù)妮o助線構(gòu)造直角三角形,利用勾股定理求線段長(zhǎng)度是本題的關(guān)鍵.7、B【解析】
試題分析:把x=﹣2代入關(guān)于x的一元二次方程x2﹣ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案選B.考點(diǎn):一元二次方程的解;一元二次方程的解法.8、D【解析】
分圓P在y軸的左側(cè)與y軸相切、圓P在y軸的右側(cè)與y軸相切兩種情況,根據(jù)切線的判定定理解答.【詳解】當(dāng)圓P在y軸的左側(cè)與y軸相切時(shí),平移的距離為3-2=1,當(dāng)圓P在y軸的右側(cè)與y軸相切時(shí),平移的距離為3+2=5,故選D.【點(diǎn)睛】本題考查的是切線的判定、坐標(biāo)與圖形的變化-平移問題,掌握切線的判定定理是解題的關(guān)鍵,解答時(shí),注意分情況討論思想的應(yīng)用.9、A【解析】如圖,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故選A.10、C【解析】試題分析:∵拋物線y=-2x2+1向右平移1個(gè)單位長(zhǎng)度,∴平移后解析式為:y=-2考點(diǎn):二次函數(shù)圖象與幾何變換.11、D【解析】
運(yùn)用正確的運(yùn)算法則即可得出答案.【詳解】A、應(yīng)該為a5,錯(cuò)誤;B、為2,錯(cuò)誤;C、為4,錯(cuò)誤;D、正確,所以答案選擇D項(xiàng).【點(diǎn)睛】本題考查了四則運(yùn)算法則,熟悉掌握是解決本題的關(guān)鍵.12、C【解析】試題分析:根據(jù)根與系數(shù)的關(guān)系可得出兩根的積,即可求得方程的另一根.設(shè)m、n是方程x2+kx﹣3=0的兩個(gè)實(shí)數(shù)根,且m=x=1;則有:mn=﹣3,即n=﹣3;故選C.【考點(diǎn)】根與系數(shù)的關(guān)系;一元二次方程的解.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、.【解析】試題分析:696000=6.96×1,故答案為6.96×1.考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù).14、1【解析】分析:首先由方向角的定義及已知條件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根據(jù)平行線的性質(zhì)得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP?cos∠A=1海里.詳解:如圖,由題意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP?cos∠A=4×cos60°=4×=1海里.故答案為1.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用-方向角問題,平行線的性質(zhì),三角函數(shù)的定義,正確理解方向角的定義是解題的關(guān)鍵.15、.【解析】
解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點(diǎn),∴點(diǎn)P到直線BC的距離為1.∴△PAB的面積.故答案為:.16、=【解析】
設(shè)甲每小時(shí)搬運(yùn)x千克,則乙每小時(shí)搬運(yùn)(x+600)千克,根據(jù)甲搬運(yùn)5000kg所用時(shí)間與乙搬運(yùn)8000kg所用時(shí)間相等建立方程求出其解就可以得出結(jié)論.【詳解】解:設(shè)甲每小時(shí)搬運(yùn)x千克,則乙每小時(shí)搬運(yùn)(x+600)千克,由題意得:=.故答案是:=.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出分式方程,根據(jù)題意找到等量關(guān)系是關(guān)鍵.17、(﹣7,0)【解析】
直接利用平移規(guī)律“左加右減,上加下減”得出平移后的解析式進(jìn)而得出答案.【詳解】∵將拋物線y=-4(x+2)2-3圖象向左平移5個(gè)單位,再向上平移3個(gè)單位,∴平移后的解析式為:y=-4(x+7)2,故得到的拋物線的頂點(diǎn)坐標(biāo)是:(-7,0).故答案為(-7,0).【點(diǎn)睛】此題主要考查了二次函數(shù)與幾何變換,正確掌握平移規(guī)律是解題關(guān)鍵.18、1.【解析】
根據(jù)反比例函數(shù)的性質(zhì)可判斷點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,則S△BOC=S△AOC,再利用反比例函數(shù)k的幾何意義得到S△AOC=3,則易得S△ABC=1.【詳解】∵雙曲線y=6x∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,∴S△BOC=S△AOC,∵S△AOC=12×1=3,∴S△ABC=2S△AOC故答案為1.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟.19、(1)50,18;(2)中位數(shù)落在51﹣56分?jǐn)?shù)段;(3).【解析】
(1)利用C分?jǐn)?shù)段所占比例以及其頻數(shù)求出總數(shù)即可,進(jìn)而得出m的值;(2)利用中位數(shù)的定義得出中位數(shù)的位置;(3)利用列表或畫樹狀圖列舉出所有的可能,再根據(jù)概率公式計(jì)算即可得解.【詳解】解:(1)由題意可得:全班學(xué)生人數(shù):15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班學(xué)生人數(shù):50人,∴第25和第26個(gè)數(shù)據(jù)的平均數(shù)是中位數(shù),∴中位數(shù)落在51﹣56分?jǐn)?shù)段;(3)如圖所示:將男生分別標(biāo)記為A1,A2,女生標(biāo)記為B1
A1
A2
B1
A1
(A1,A2)
(A1,B1)
A2
(A2,A1)
(A2,B1)
B1
(B1,A1)
(B1,A2)
P(一男一女).【點(diǎn)睛】本題考查列表法與樹狀圖法,頻數(shù)(率)分布表,扇形統(tǒng)計(jì)圖,中位數(shù).20、(1)證明見解析;(2)EM=4;(3)sin∠EOB=.【解析】
(1)連接A、C,E、B點(diǎn),那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對(duì)應(yīng)角相等,即可得△AMC∽△EMB;
(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長(zhǎng)度,根據(jù)已知條件推出AM、BM的長(zhǎng)度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長(zhǎng)度;
(3)過點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,通過作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長(zhǎng)度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.【詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數(shù),∴EC=7,∵M(jìn)為OB的中點(diǎn),∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【點(diǎn)睛】本題考查了圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握?qǐng)A心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì).21、(1)見解析;(2)①;②cos∠AFE=【解析】
(1)用特殊值法,設(shè),則,證,可求出CF,DF的長(zhǎng),即可求出結(jié)論;(2)①如圖2,過F作交AD于點(diǎn)G,證和是等腰直角三角形,證,求出的值,即可寫出的值;②如圖3,作交AD于點(diǎn)T,作于H,證,設(shè)CF=2,則CE=6,可設(shè)AT=x,則TF=3x,,,分別用含x的代數(shù)式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結(jié)論.【詳解】(1)設(shè)BE=EC=2,則AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,則,∴;(2)①如圖2,過F作交AD于點(diǎn)G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=DF,∴;②如圖3,作交AD于點(diǎn)T,作于H,則,∴,∴∠ATF=∠C,又∵,且∠D=∠AFE,∴∠TAF=∠CFE,∴,∴,設(shè)CF=2,則CE=6,可設(shè)AT=x,則TF=3x,,∴,且,由,得,解得x=5,∴.【點(diǎn)睛】本題主要考查了三角形相似的判定及性質(zhì)的綜合應(yīng)用,熟練掌握三角形相似的判定及性質(zhì)是解決本題的關(guān)鍵.22、(1)見解析;(2).【解析】
(1)先證明△OAC≌△ODC,得出∠1=∠2,則∠2=∠4,故OC∥DE,即可證得DE⊥CF;(2)根據(jù)OA=OC得到∠2=∠3=30°,故∠COD=120°,再根據(jù)弧長(zhǎng)公式計(jì)算即可.【詳解】解:(1)DE⊥CF.理由如下:∵CF為切線,∴OC⊥CF,∵CA=CD,OA=OD,OC=OC,∴△OAC≌△ODC,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC∥DE,∴DE⊥CF;(2)∵OA=OC,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)與弧長(zhǎng)的計(jì)算,解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)與弧長(zhǎng)的公式.23、(1)50人;(2)補(bǔ)全圖形見解析,表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù)為108°;(3).【解析】分析:(1)、根據(jù)B的人數(shù)和百分比得出樣本容量;(2)、根據(jù)總?cè)藬?shù)求出C組的人數(shù),根據(jù)A組的人數(shù)占總?cè)藬?shù)的百分比得出扇形的圓心角度數(shù);(3)、根據(jù)題意列出樹狀圖,從而得出概率.詳解:(1)被調(diào)查的總?cè)藬?shù)為19÷38%=50人;(2)C組的人數(shù)為50﹣(15+19+4)=12(人),補(bǔ)全圖形如下:表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù)為360°×=108°;(3)畫樹狀圖如下,共有12個(gè)可能的結(jié)果,恰好選中甲的結(jié)果有6個(gè),∴P(恰好選中甲)=.點(diǎn)睛:本題主要考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖以及概率的計(jì)算法則,屬于基礎(chǔ)題型.理解頻數(shù)、頻率與樣本容量之間的關(guān)系是解題的關(guān)鍵.24、(1),;(1)2.【解析】試題分析:(1)先求出A、B、C點(diǎn)坐標(biāo),用待定系數(shù)法求出直線AB和反比例的函數(shù)解析式;(1)聯(lián)立一次函數(shù)的解析式和反比例的函數(shù)解析式可得交點(diǎn)D的坐標(biāo),從而根據(jù)三角形面積公式求解.試題解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x軸于點(diǎn)E,tan∠ABO==,∴OA=1,CE=3,∴點(diǎn)A的坐標(biāo)為(0,1)、點(diǎn)B的坐標(biāo)為C(4,0)、點(diǎn)C的坐標(biāo)為(﹣1,3),設(shè)直線AB的解析式為,則,解得:,故直線AB的解析式為,設(shè)反比例函數(shù)的解析式為(),將點(diǎn)C的坐標(biāo)代入,得3=,∴m=﹣3.∴該反比例函數(shù)的解析式為;(1)聯(lián)立反比例函數(shù)的解析式和直線AB的解析式可得,可得交點(diǎn)D的坐標(biāo)為(3,﹣1),則△BOD的面積=4×1÷1=1,△BOD的面積=4×3÷1=3,故△OCD的面積為1+3=2.考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.25、(1)證明見解析(2)【解析】
(1)由點(diǎn)G是AE的中點(diǎn),根據(jù)垂徑定理可知OD⊥AE,由等腰三角形的性質(zhì)可得∠CBF=∠DFG,∠D=∠OBD,從而∠OBD+∠CBF=90°,從而可證結(jié)論;(2)連接AD,解Rt△OAG可求出OG=3,AG=4,進(jìn)而可求出DG的長(zhǎng),再證明△DAG∽△FDG,由相似三角形的性質(zhì)求出FG的長(zhǎng),再由勾股定理即可求出FD的長(zhǎng).【詳解】(1)∵點(diǎn)G是AE的中點(diǎn),∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半徑,∴BC是⊙O的切線;(2)連接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直徑,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG?FG,∴4=4FG,∴FG=1∴由勾股定理可知:FD=.【點(diǎn)睛】本題考查了垂徑定理,等腰三角形的性質(zhì),切線的判定,解直角三角形,相似三角形的判定與性質(zhì),勾股定理等知識(shí),求出∠CBF=∠DFG,∠D=∠OBD是解(1)的關(guān)鍵,證明證明△DAG∽△FDG是解(2)的關(guān)鍵.26、(1);(2).【解析】
(1)一共4個(gè)小球,則任取一個(gè)球,共有4種不同結(jié)果,摸出球上的漢字剛好是“美”的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GB-T 39700-2020硼泥處理處置方法》專題研究報(bào)告
- 《GBT 31430-2015 中國(guó)傳統(tǒng)色色名及色度特性》專題研究報(bào)告
- 《GB-T 24951-2010船舶和海上技術(shù) 船用雷達(dá)反射器》專題研究報(bào)告
- 2026年安陽(yáng)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性考試題庫(kù)及答案詳解一套
- 清熱解毒用對(duì)它
- 災(zāi)后重建工程監(jiān)理協(xié)議
- 2025年CFA真題答案解析
- 2025年腸道傳染病知識(shí)培訓(xùn)試題及答案
- 2025年70歲考駕照三力測(cè)試題及答案
- 2025年治療精神障礙藥項(xiàng)目建議書
- 2025年居家養(yǎng)老助餐合同協(xié)議
- 石材行業(yè)合同范本
- 生產(chǎn)性采購(gòu)管理制度(3篇)
- 2026年遠(yuǎn)程超聲診斷系統(tǒng)服務(wù)合同
- 中醫(yī)藥轉(zhuǎn)化研究中的專利布局策略
- COPD巨噬細(xì)胞精準(zhǔn)調(diào)控策略
- 網(wǎng)店代發(fā)合作合同范本
- 心源性休克的液體復(fù)蘇挑戰(zhàn)與個(gè)體化方案
- 九師聯(lián)盟2026屆高三上學(xué)期12月聯(lián)考英語(yǔ)(第4次質(zhì)量檢測(cè))(含答案)
- 2025年醫(yī)院法律法規(guī)培訓(xùn)考核試題及答案
- (2025年)人民法院聘用書記員考試試題(含答案)
評(píng)論
0/150
提交評(píng)論