負(fù)載感知的自動(dòng)調(diào)優(yōu)技術(shù)_第1頁(yè)
負(fù)載感知的自動(dòng)調(diào)優(yōu)技術(shù)_第2頁(yè)
負(fù)載感知的自動(dòng)調(diào)優(yōu)技術(shù)_第3頁(yè)
負(fù)載感知的自動(dòng)調(diào)優(yōu)技術(shù)_第4頁(yè)
負(fù)載感知的自動(dòng)調(diào)優(yōu)技術(shù)_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

負(fù)載感知的自動(dòng)調(diào)優(yōu)技術(shù)

I目錄

■CONTENTS

第一部分負(fù)載感知的概念及優(yōu)勢(shì)..............................................2

第二部分自動(dòng)調(diào)優(yōu)技術(shù)的運(yùn)作機(jī)制............................................3

第三部分基于負(fù)載的資源分配策略............................................6

第四部分動(dòng)態(tài)閾值調(diào)整的原則和方法..........................................9

第五部分性能監(jiān)控和異常檢測(cè)技術(shù)...........................................12

第六部分負(fù)載變化預(yù)測(cè)算法的應(yīng)用...........................................14

第七部分優(yōu)化算法在自動(dòng)調(diào)優(yōu)中的作用......................................17

第八部分負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)的應(yīng)用領(lǐng)域..................................20

第一部分負(fù)載感知的概念及優(yōu)勢(shì)

負(fù)載感知的概念

負(fù)載感知是一種通過(guò)監(jiān)控和分析系統(tǒng)或應(yīng)用程序的性能指標(biāo)來(lái)理解

和預(yù)測(cè)其負(fù)載特性的技術(shù)。通過(guò)識(shí)別和量化系統(tǒng)內(nèi)關(guān)鍵性能指標(biāo)(KPI)

的變化,負(fù)載感知可以提供有關(guān)負(fù)載狀態(tài)和容量瓶頸的實(shí)時(shí)洞察。

負(fù)載感知的優(yōu)勢(shì)

負(fù)載感知技術(shù)為現(xiàn)代系統(tǒng)和應(yīng)用程序提供了許多優(yōu)勢(shì):

1.優(yōu)化資源分配:

*實(shí)時(shí)監(jiān)控負(fù)載水平,從而根據(jù)需求動(dòng)態(tài)分配資源,以最大限度地提

高性能和效率。

2.主動(dòng)容量規(guī)劃:

*預(yù)測(cè)負(fù)載模式和趨勢(shì),以提前規(guī)劃容量需求,從而避免服務(wù)中斷和

性能問(wèn)題。

3.故障檢測(cè)和隔離:

*通過(guò)識(shí)別異常負(fù)載模式,負(fù)載感知可以快速檢測(cè)故障,并根據(jù)需要

啟動(dòng)隔離或故障轉(zhuǎn)移機(jī)制。

4.性能基準(zhǔn)和調(diào)優(yōu):

*持續(xù)監(jiān)控性能指標(biāo),以建立性能基線,并識(shí)別可調(diào)優(yōu)的參數(shù)以提高

效率和可擴(kuò)展性。

5.可靠性和可用性改進(jìn):

*通過(guò)主動(dòng)管理負(fù)或,負(fù)載感知技術(shù)可以提高系統(tǒng)的可靠性和可用性,

從而減少停機(jī)時(shí)間并提高用戶滿意度。

6.按需計(jì)費(fèi)和成本優(yōu)化:

*詳細(xì)了解負(fù)載模式可實(shí)現(xiàn)按需計(jì)費(fèi),并根據(jù)資源使用情況優(yōu)化成本,

從而提高云和托管服務(wù)的可負(fù)擔(dān)性。

7.用戶體驗(yàn)改進(jìn):

*優(yōu)化系統(tǒng)性能和響應(yīng)時(shí)間,從而改善最終用戶的體驗(yàn),提高滿意度

和保留率。

負(fù)載感知的實(shí)際應(yīng)用

負(fù)載感知技術(shù)在各種行業(yè)和應(yīng)用程序中得到了廣泛應(yīng)用,包括:

*云計(jì)算:優(yōu)化云資源分配,提高可擴(kuò)展性和成本效率。

*微服務(wù)架構(gòu):監(jiān)控和管理分布式微服務(wù)的負(fù)載,以確保穩(wěn)定性和性

能。

*物聯(lián)網(wǎng)(IoT):分析來(lái)自連接設(shè)備的大量數(shù)據(jù)流,以優(yōu)化數(shù)據(jù)處理

和決策。

*大數(shù)據(jù)和分析:管理大數(shù)據(jù)處理和分析工作負(fù)載,以實(shí)現(xiàn)可擴(kuò)展性

和高效性。

*網(wǎng)絡(luò)安全:檢測(cè)和響應(yīng)網(wǎng)絡(luò)攻擊,并優(yōu)化安全措施以最大限度地減

少對(duì)性能的影響。

第二部分自動(dòng)調(diào)優(yōu)技術(shù)的運(yùn)作機(jī)制

關(guān)鍵詞關(guān)鍵要點(diǎn)

【自適應(yīng)采樣技術(shù)】

1.通過(guò)動(dòng)態(tài)調(diào)整訓(xùn)練數(shù)據(jù)子集的大小,自適應(yīng)采樣技術(shù)可

以優(yōu)化模型訓(xùn)練過(guò)程。

2.通過(guò)監(jiān)控訓(xùn)練進(jìn)度,咳技術(shù)可識(shí)別數(shù)據(jù)集中對(duì)訓(xùn)練最具

影響力的子集,從而專注于這些子集。

3.該方法可減少訓(xùn)練時(shí)間,同時(shí)保持模型性能。

【貝葉斯優(yōu)化】

自動(dòng)調(diào)優(yōu)技術(shù)的運(yùn)作機(jī)制

負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)是一種通過(guò)實(shí)時(shí)監(jiān)控系統(tǒng)負(fù)載并根據(jù)需要?jiǎng)?/p>

態(tài)調(diào)整系統(tǒng)資源配置的自動(dòng)化過(guò)程。其核心原理是通過(guò)連續(xù)評(píng)估系統(tǒng)

性能,在保證系統(tǒng)穩(wěn)定性和性能的前提下,優(yōu)化資源利用率。

1.負(fù)載監(jiān)測(cè)

自動(dòng)調(diào)優(yōu)技術(shù)首先需要對(duì)系統(tǒng)負(fù)載進(jìn)行持續(xù)監(jiān)測(cè)。這包括跟蹤關(guān)鍵性

能指標(biāo)(KPI),例如CPU利用率、內(nèi)存使用率、I/O吞吐量和網(wǎng)絡(luò)延

遲。這些指標(biāo)提供系統(tǒng)的實(shí)時(shí)狀態(tài)視圖,并用于確定調(diào)優(yōu)的必要性。

2.性能評(píng)估

一旦收集到負(fù)載數(shù)據(jù),自動(dòng)調(diào)優(yōu)技術(shù)就會(huì)評(píng)估系統(tǒng)的性能。這通常涉

及根據(jù)預(yù)定義的閾值比較當(dāng)前負(fù)載和預(yù)期負(fù)載。如果性能下降超出閾

值,則觸發(fā)調(diào)優(yōu)過(guò)程。

3.調(diào)優(yōu)決策

在評(píng)估性能后,自動(dòng)調(diào)優(yōu)技術(shù)根據(jù)系統(tǒng)的當(dāng)前需求和配置確定適當(dāng)?shù)?/p>

調(diào)優(yōu)決策。這些決策可能包括:

*調(diào)整應(yīng)用程序池大小

*修改數(shù)據(jù)庫(kù)連接設(shè)置

*優(yōu)化網(wǎng)絡(luò)配置

*擴(kuò)展服務(wù)器資源(例如,添加更多CPU或內(nèi)存)

4.調(diào)優(yōu)實(shí)施

一旦確定了調(diào)優(yōu)決策,自動(dòng)調(diào)優(yōu)技術(shù)就會(huì)自動(dòng)實(shí)施這些更改。這可能

涉及更新配置文件、重新啟動(dòng)服務(wù)或部署新基礎(chǔ)設(shè)施。

5.持續(xù)監(jiān)控

調(diào)優(yōu)實(shí)施后,自動(dòng)調(diào)優(yōu)技術(shù)繼續(xù)監(jiān)控系統(tǒng)負(fù)載和性能。如果系統(tǒng)性能

改善,則調(diào)優(yōu)被視為成功。如果性能未得到改善或下降,則自動(dòng)調(diào)優(yōu)

技術(shù)將重新啟動(dòng)調(diào)優(yōu)過(guò)程,并可能嘗試其他調(diào)優(yōu)決策。

自動(dòng)調(diào)優(yōu)技術(shù)的優(yōu)點(diǎn)

*提高性能和響應(yīng)能力:通過(guò)優(yōu)化資源配置,自動(dòng)調(diào)優(yōu)技術(shù)可以提高

系統(tǒng)性能并減少延遲。

*提高資源利用率:通過(guò)動(dòng)態(tài)調(diào)整資源,自動(dòng)調(diào)優(yōu)技術(shù)可以防止資源

浪費(fèi)并確保有效利用。

*簡(jiǎn)化管理:自動(dòng)調(diào)優(yōu)技術(shù)從管理員處消除了手動(dòng)調(diào)優(yōu)的負(fù)擔(dān),從而

簡(jiǎn)化了系統(tǒng)管理。

*提高可靠性:通過(guò)持續(xù)監(jiān)控和優(yōu)化系統(tǒng)性能,自動(dòng)調(diào)優(yōu)技術(shù)可以幫

助防止停機(jī)和故障C

自動(dòng)調(diào)優(yōu)技術(shù)的局限性

*復(fù)雜性:自動(dòng)調(diào)優(yōu)技術(shù)可能非常復(fù)雜,需要對(duì)系統(tǒng)和調(diào)優(yōu)技術(shù)有深

入的理解。

*潛在性能下降:如果調(diào)優(yōu)決策不當(dāng),自動(dòng)調(diào)優(yōu)技術(shù)可能會(huì)導(dǎo)致性能

下降。

*不適用于所有系統(tǒng):自動(dòng)調(diào)優(yōu)技術(shù)可能不適用于需要高度定制或手

動(dòng)干預(yù)的系統(tǒng)。

第三部分基于負(fù)載的資源分配策略

關(guān)鍵詞關(guān)鍵要點(diǎn)

基于負(fù)載的資源分配策略

1.實(shí)時(shí)監(jiān)控系統(tǒng)負(fù)載,根據(jù)負(fù)載狀況動(dòng)態(tài)調(diào)整資源分配,

提商資源利用率。

2.通過(guò)機(jī)器學(xué)習(xí)或其他算法,預(yù)測(cè)未來(lái)負(fù)載需求,提前預(yù)

留資源,避免服務(wù)中斷。

3.采用分層密源分配模型,針對(duì)不同類型的負(fù)載需求,分

配不同的資源優(yōu)先級(jí)和配額,確保關(guān)鍵業(yè)務(wù)的穩(wěn)定運(yùn)行。

彈性伸縮機(jī)制

1.根據(jù)負(fù)載需求自動(dòng)增加或減少實(shí)例數(shù)量,實(shí)現(xiàn)系統(tǒng)彈性

伸縮,應(yīng)對(duì)突發(fā)流量或業(yè)務(wù)高峰。

2.采用平滑伸縮技術(shù),避免因?qū)嵗焖賳?dòng)或銷毀帶來(lái)的

性能波動(dòng)和成本浪費(fèi)。

3.與基于負(fù)載的資源分配策略結(jié)合,實(shí)現(xiàn)自適應(yīng)資源管理,

優(yōu)化成本和性能。

工作負(fù)載均衡

1.通過(guò)均衡負(fù)載分發(fā),防止資源集中和性能瓶頸,提高系

統(tǒng)吞吐量。

2.采用智能調(diào)度算法,根據(jù)實(shí)例負(fù)載、健康狀態(tài)和親和性,

合理分配任務(wù),避免資源浪費(fèi)。

3.支持跨可用區(qū)、跨地域的負(fù)載均衡,增強(qiáng)系統(tǒng)可用性和

容災(zāi)能力。

自動(dòng)故障轉(zhuǎn)移

1.實(shí)時(shí)監(jiān)控系統(tǒng)健康狀況,當(dāng)發(fā)生故障時(shí)快速自動(dòng)切換到

備用實(shí)例或可用區(qū),確保服務(wù)連續(xù)性。

2.采用容錯(cuò)設(shè)計(jì),通過(guò)冗余和熱備份機(jī)制,提高系統(tǒng)對(duì)故

障的抵抗力。

3.利用自動(dòng)化工具,簡(jiǎn)化故障處理流程,減少人工介入,

提高運(yùn)維效率。

自助服務(wù)和自動(dòng)化

1.提供自助服務(wù)界面,允許開(kāi)發(fā)人員和運(yùn)維人員根據(jù)業(yè)務(wù)

需求自管理資源,提高靈活性。

2.通過(guò)自動(dòng)化工具,簡(jiǎn)化資源配置、監(jiān)控和故障處理的任

務(wù),減少人工操作,降低運(yùn)維成本。

3.采用云原生技術(shù),如Kubemetes和Serverless,實(shí)現(xiàn)更加

自動(dòng)化和云化的資源管理。

趨勢(shì)和前沿

1.人工智能(AI)和機(jī)器學(xué)習(xí)(ML):利用AI和ML技

術(shù),優(yōu)化資源分配算法,預(yù)測(cè)負(fù)載需求和異常情況,提高系

統(tǒng)性能和效率。

2.多云和混合云:支持跨多個(gè)云平臺(tái)和本地環(huán)境的資源管

理,提供更靈活和成本優(yōu)化的解決方案。

3.可持續(xù)性和綠色計(jì)算:優(yōu)化資源利用率和能源消耗,實(shí)

現(xiàn)可持續(xù)的云計(jì)算,減少碳足跡。

基于負(fù)載的資源分配策略

負(fù)載感知的自動(dòng)調(diào)優(yōu)技術(shù)的核心之一是基于負(fù)載的資源分配策略。該

策略利用不斷更新的系統(tǒng)負(fù)載信息,動(dòng)態(tài)調(diào)整分配給應(yīng)用程序或服務(wù)

的資源,以優(yōu)化性能和資源利用率。

動(dòng)態(tài)資源分配算法

常見(jiàn)的動(dòng)態(tài)資源分配算法包括:

*比例積分微分(P1D)控制:將系統(tǒng)負(fù)載作為輸入,調(diào)整資源分配

以減少負(fù)載波動(dòng)。

*預(yù)測(cè)自動(dòng)控制:使用機(jī)器學(xué)習(xí)模型預(yù)測(cè)未來(lái)負(fù)載,提前分配資源以

避免性能下降。

*最短延遲優(yōu)先:優(yōu)先分配資源給具有最短延遲需求的任務(wù),確保關(guān)

鍵業(yè)務(wù)應(yīng)用程序的快速響應(yīng)。

*加權(quán)公平隊(duì)列:將資源分配給具有不同優(yōu)先級(jí)或權(quán)重的應(yīng)用程序或

服務(wù),以確保公平的資源使用。

負(fù)載度量

選擇適當(dāng)?shù)呢?fù)載度量對(duì)于制定有效的資源分配策略至關(guān)重要。常見(jiàn)的

負(fù)載度量包括:

*CPU利用率:反映系統(tǒng)中運(yùn)行的處理器的利用程度。

*內(nèi)存使用率:表示應(yīng)用程序使用的內(nèi)存量與系統(tǒng)可用內(nèi)存的比例。

*I/O吞吐量:測(cè)量系統(tǒng)I/O子系統(tǒng)的吞吐量。

*響應(yīng)時(shí)間:平均處理請(qǐng)求所需的時(shí)間。

*并發(fā)性:同時(shí)處理的請(qǐng)求或任務(wù)數(shù)量。

資源調(diào)節(jié)機(jī)制

根據(jù)負(fù)載度量和資源分配算法,系統(tǒng)使用調(diào)節(jié)機(jī)制修改資源分配。常

用的調(diào)節(jié)機(jī)制包括:

*CPU調(diào)整:調(diào)整處理器分配給特定應(yīng)用程序或服務(wù)的資源百分比。

*內(nèi)存分配:分配或釋放內(nèi)存以滿足應(yīng)用程序的內(nèi)存需求。

*I/O優(yōu)先級(jí):優(yōu)先處理來(lái)自特定應(yīng)用程序或服務(wù)的I/O請(qǐng)求。

*請(qǐng)求限制:限制同時(shí)處理的請(qǐng)求或任務(wù)的數(shù)量。

優(yōu)勢(shì)

基于負(fù)載的資源分配策略提供了以下優(yōu)勢(shì):

*優(yōu)化性能:通過(guò)響應(yīng)負(fù)載變化,系統(tǒng)可以優(yōu)化資源分配,以最大限

度地提高應(yīng)用程序性能和響應(yīng)時(shí)間。

*高效利用資源:通過(guò)動(dòng)態(tài)分配資源,系統(tǒng)可以避免資源過(guò)度配置或

不足,從而提高資源利用率。

*提高可擴(kuò)展性:自動(dòng)調(diào)優(yōu)技術(shù)允許系統(tǒng)根據(jù)負(fù)載變化自動(dòng)調(diào)整,從

而支持不斷變化的工作負(fù)載和橫向擴(kuò)展。

*降低管理負(fù)擔(dān):通過(guò)自動(dòng)化資源分配過(guò)程,系統(tǒng)管理員可以減少管

理和優(yōu)化的開(kāi)銷。

實(shí)施注意事項(xiàng)

實(shí)施基于負(fù)載的資源分配策略時(shí),需要考慮以下注意事項(xiàng):

*數(shù)據(jù)收集:收集準(zhǔn)確且及時(shí)的負(fù)載數(shù)據(jù)對(duì)于制定有效的決策至關(guān)重

要。

*算法選擇:選擇適合應(yīng)用場(chǎng)景和負(fù)載特性的動(dòng)態(tài)資源分配算法。

*調(diào)節(jié)機(jī)制:根據(jù)系統(tǒng)限制和應(yīng)用程序需求選擇適當(dāng)?shù)恼{(diào)節(jié)機(jī)制。

*持續(xù)監(jiān)控:持續(xù)監(jiān)控系統(tǒng)性能并調(diào)整策略,以確保持續(xù)優(yōu)化。

*適應(yīng)性:隨著系統(tǒng)配置或工作負(fù)載的變化,定期審查和更新資源分

配策略。

結(jié)論

基于負(fù)載的資源分配策略是負(fù)載感知的自動(dòng)調(diào)優(yōu)技術(shù)中至關(guān)重要的

一環(huán)。通過(guò)動(dòng)態(tài)調(diào)整資源分配,系統(tǒng)可以優(yōu)化性能、提高資源利用率、

提高可擴(kuò)展性并降低管理負(fù)擔(dān)。仔細(xì)考慮數(shù)據(jù)收集、算法選擇、調(diào)節(jié)

機(jī)制、監(jiān)控和適應(yīng)性等方面,可以有效實(shí)施基于負(fù)載的資源分配策略,

為云計(jì)算環(huán)境和分布式系統(tǒng)帶來(lái)顯著的好處。

第四部分動(dòng)態(tài)閾值調(diào)整的原則和方法

關(guān)鍵.[關(guān)鍵要及

【動(dòng)態(tài)閾值調(diào)整的原貝”

1.根據(jù)系統(tǒng)的當(dāng)前狀態(tài)和負(fù)載情況,動(dòng)態(tài)調(diào)整閾值,以確

保系統(tǒng)的性能和可靠性。

2.閡值應(yīng)隨著系統(tǒng)負(fù)載的變化而自適應(yīng)地調(diào)整,以避免誤

報(bào)或漏報(bào)。

3.閾值應(yīng)基于系統(tǒng)的實(shí)際運(yùn)行情況進(jìn)行校準(zhǔn),以保證其準(zhǔn)

確性。

【動(dòng)態(tài)閾值調(diào)整的方法】

動(dòng)態(tài)閾值調(diào)整的原則和方法

動(dòng)態(tài)閾值調(diào)整是負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)中一項(xiàng)關(guān)鍵策略,旨在根據(jù)系

統(tǒng)負(fù)載狀況實(shí)時(shí)調(diào)整閾值,以優(yōu)化系統(tǒng)性能和資源利用率。其目的是

在保證系統(tǒng)穩(wěn)定性和可用的前提下,最大程度地提高資源利用效率。

原則

動(dòng)態(tài)閾值調(diào)整遵循以下原則:

*負(fù)載感知:閾值調(diào)整基于對(duì)系統(tǒng)負(fù)載的實(shí)時(shí)監(jiān)控。

*漸進(jìn)調(diào)整:閾值調(diào)整是逐漸進(jìn)行的,避免劇烈變化導(dǎo)致系統(tǒng)不穩(wěn)定。

*自適應(yīng):閾值調(diào)整算法可以根據(jù)系統(tǒng)負(fù)載變化進(jìn)行自適應(yīng)調(diào)整。

*可解釋性:閾值調(diào)整的邏輯和決策過(guò)程應(yīng)清晰且可解釋。

*平衡性能和資源利用率:閾值調(diào)整應(yīng)平衡系統(tǒng)性能和資源利用率之

間的關(guān)系。

方法

常用的動(dòng)態(tài)閾值調(diào)整方法包括:

1.滑動(dòng)窗口法

*維護(hù)一個(gè)窗口,用于存儲(chǔ)最近一段時(shí)間內(nèi)的系統(tǒng)負(fù)載數(shù)據(jù)。

*計(jì)算窗口內(nèi)負(fù)載的平均值或中值。

*根據(jù)平均值或中值調(diào)整閾值。

2.自適應(yīng)門限算法

*定義一個(gè)目標(biāo)系統(tǒng)負(fù)載,稱為門限。

*監(jiān)控系統(tǒng)負(fù)載,并根據(jù)負(fù)載與門限的差值調(diào)整閾值。

木當(dāng)負(fù)載高于門限時(shí),閾值降低;當(dāng)負(fù)載低于門限時(shí),閾值提高。

3.控制理論法

*將閾值調(diào)整問(wèn)題建模為一個(gè)控制系統(tǒng)。

*使用控制理論來(lái)設(shè)計(jì)調(diào)整算法,以確保系統(tǒng)負(fù)載穩(wěn)定在目標(biāo)范圍內(nèi)。

*調(diào)整算法可以是PID控制器、狀態(tài)反饋控制器等。

4.機(jī)器學(xué)習(xí)法

*收集系統(tǒng)負(fù)載和網(wǎng)值數(shù)據(jù)。

*訓(xùn)練機(jī)器學(xué)習(xí)模型,以預(yù)測(cè)最佳的閾值設(shè)置。

*將訓(xùn)練好的模型部署到系統(tǒng)中,用于實(shí)時(shí)閾值調(diào)整。

例子

在云計(jì)算環(huán)境中,可以利用動(dòng)態(tài)閾值調(diào)整來(lái)優(yōu)化虛擬機(jī)(VM)資源分

配。通過(guò)監(jiān)控VM負(fù)載,可以動(dòng)態(tài)調(diào)整CPU和內(nèi)存閾值,以在保證VM

性能的前提下最大程度地提高資源利用率。

評(píng)估

動(dòng)態(tài)閾值調(diào)整的評(píng)估指標(biāo)包括:

*系統(tǒng)性能(響應(yīng)時(shí)間、吞吐量等)

*資源利用率(CPU使用率、內(nèi)存使用率等)

*系統(tǒng)穩(wěn)定性(故障率、服務(wù)中斷等)

挑戰(zhàn)

動(dòng)態(tài)閾值調(diào)整也面臨一些挑戰(zhàn):

*負(fù)載預(yù)測(cè)難度:準(zhǔn)確預(yù)測(cè)系統(tǒng)負(fù)載具有挑戰(zhàn)性,可能會(huì)影響閾值調(diào)

整的有效性。

*算法復(fù)雜度:復(fù)雜的自適應(yīng)算法可能會(huì)引入額外的計(jì)算開(kāi)銷和延遲。

*協(xié)調(diào)多個(gè)系統(tǒng):在分布式系統(tǒng)中,協(xié)調(diào)不同系統(tǒng)之間的閾值調(diào)整至

關(guān)重要,以避免沖突和不穩(wěn)定。

第五部分性能監(jiān)控和異常檢測(cè)技術(shù)

關(guān)鍵詞關(guān)鍵要點(diǎn)

【指標(biāo)定義和采集】

1.明確性能指標(biāo)的含義及測(cè)量方法,確保指標(biāo)的客觀性和

可比性。

2.選擇合適的指標(biāo)采集工具,如指標(biāo)代理、監(jiān)控平臺(tái)等,

確保指標(biāo)采集的完整性、準(zhǔn)確性。

3.對(duì)采集到的指標(biāo)進(jìn)行預(yù)處理,如剔除異常值、平滑處理,

以提高指標(biāo)的穩(wěn)定性和反映系統(tǒng)性能的準(zhǔn)確性。

【基線建立和更新】

性能監(jiān)控

性能監(jiān)控是負(fù)載感知自動(dòng)化調(diào)優(yōu)中的一個(gè)關(guān)鍵方面。它涉及持續(xù)收集

和分析系統(tǒng)指標(biāo),以識(shí)別性能瓶頸和異常行為。通過(guò)主動(dòng)監(jiān)控系統(tǒng)性

能,可以在問(wèn)題變得嚴(yán)重之前及時(shí)發(fā)現(xiàn)并解決問(wèn)題。

常用的性能監(jiān)控技術(shù)包括:

*指標(biāo)收集:收集與系統(tǒng)性能相關(guān)的各種指標(biāo),例如CPU利用率、

內(nèi)存使用率、網(wǎng)絡(luò)吞吐量和響應(yīng)時(shí)間。

*指標(biāo)聚合:將收集到的指標(biāo)聚合到中央位置,以便進(jìn)行分析和報(bào)告。

*閾值監(jiān)測(cè):設(shè)置閾值來(lái)定義正常性能的范圍。當(dāng)指標(biāo)超出這些閾值

時(shí),會(huì)觸發(fā)警報(bào)。

*數(shù)據(jù)可視化:使用儀表板、圖表和圖形等工具將監(jiān)控?cái)?shù)據(jù)可視化,

以便輕松識(shí)別趨勢(shì)和異常。

異常檢測(cè)

異常檢測(cè)是性能監(jiān)控的另一重要方面。它涉及使用統(tǒng)計(jì)技術(shù)和機(jī)器學(xué)

習(xí)算法來(lái)識(shí)別系統(tǒng)行為的異常或偏離。通過(guò)檢測(cè)異常,可以快速識(shí)別

潛在問(wèn)題,并在它們對(duì)系統(tǒng)性能產(chǎn)生重大影響之前解決這些問(wèn)題。

常用的異常檢測(cè)技術(shù)包括:

*時(shí)間序列分析:分析時(shí)間序列數(shù)據(jù)(例如指標(biāo)隨時(shí)間的變化)以檢

測(cè)異常模式和趨勢(shì)。

*機(jī)器學(xué)習(xí)算法:使用監(jiān)督學(xué)習(xí)或無(wú)監(jiān)督學(xué)習(xí)算法來(lái)建立模型,以預(yù)

測(cè)正常行為并識(shí)別異常。

*基于規(guī)則的異常檢測(cè):定義一組規(guī)則來(lái)定義異常行為。當(dāng)系統(tǒng)行為

違反這些規(guī)則時(shí),會(huì)觸發(fā)警報(bào)。

*基于相似性的異常檢測(cè):將系統(tǒng)行為與過(guò)去記錄的正常行為進(jìn)行比

較,以識(shí)別任何異?;蚱?。

性能監(jiān)控和異常檢測(cè)的優(yōu)點(diǎn)

將性能監(jiān)控和異常檢測(cè)整合到負(fù)載感知自動(dòng)化調(diào)優(yōu)中提供了許多優(yōu)

點(diǎn),包括:

*及時(shí)檢測(cè)問(wèn)題:持續(xù)監(jiān)控系統(tǒng)性能可以及早發(fā)現(xiàn)問(wèn)題,從而在它們

對(duì)系統(tǒng)性能產(chǎn)生重大影響之前解決問(wèn)題。

*識(shí)別潛在瓶頸:通過(guò)分析指標(biāo)和檢測(cè)異常,可以識(shí)別可能導(dǎo)致未來(lái)

性能問(wèn)題的潛在瓶頸。

*優(yōu)化資源利用:通過(guò)了解系統(tǒng)性能瓶頸,可以優(yōu)化資源利用率,提

高整體效率。

*降低系統(tǒng)故障時(shí)間:及早發(fā)現(xiàn)和解決問(wèn)題可以減少停機(jī)時(shí)間,提高

系統(tǒng)可用性。

*提高用戶體驗(yàn):通過(guò)保持系統(tǒng)性能,可以確保用戶獲得良好的用戶

體驗(yàn),提高客戶滿意度。

結(jié)論

性能監(jiān)控和異常檢測(cè)是負(fù)載感知自動(dòng)化調(diào)優(yōu)的關(guān)鍵技術(shù),通過(guò)主動(dòng)監(jiān)

控系統(tǒng)性能并識(shí)別異常行為,可以及早發(fā)現(xiàn)問(wèn)題并解決問(wèn)題。這有助

于優(yōu)化系統(tǒng)性能,提高可用性,并降低停機(jī)時(shí)間。

第六部分負(fù)載變化預(yù)測(cè)算法的應(yīng)用

關(guān)鍵詞關(guān)鍵要點(diǎn)

【在線負(fù)載預(yù)測(cè)算法的應(yīng)

用】:1.通過(guò)收集歷史負(fù)載數(shù)據(jù),利用機(jī)器學(xué)習(xí)算法建立負(fù)載預(yù)

測(cè)模型,預(yù)測(cè)未來(lái)一定時(shí)間段內(nèi)的負(fù)載變化。

2.算法能夠動(dòng)態(tài)調(diào)整,很據(jù)實(shí)際負(fù)載的偏差進(jìn)行更新,提

高預(yù)測(cè)精度。

3.預(yù)測(cè)結(jié)果可用于優(yōu)化芻動(dòng)調(diào)優(yōu)策略,提前調(diào)整系統(tǒng)配置,

滿足不斷變化的負(fù)載需求。

【神經(jīng)網(wǎng)絡(luò)負(fù)載預(yù)測(cè)算法的應(yīng)用】:

負(fù)載變化預(yù)測(cè)算法的應(yīng)用

負(fù)載變化預(yù)測(cè)算法是負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)的重要組成部分,用于預(yù)

測(cè)未來(lái)系統(tǒng)負(fù)載,以便系統(tǒng)能夠提前做出調(diào)整,滿足負(fù)載變化的需求。

常見(jiàn)的負(fù)載變化預(yù)測(cè)算法包括:

歷史數(shù)據(jù)分析法

該算法根據(jù)歷史負(fù)或數(shù)據(jù)構(gòu)建預(yù)測(cè)模型。通過(guò)分析歷史數(shù)據(jù)中的模式

和趨勢(shì),算法可以預(yù)測(cè)未來(lái)的負(fù)載值。常用的歷史數(shù)據(jù)分析方法包括

時(shí)間序列分析和回歸分析。

專家系統(tǒng)法

該算法利用專家知識(shí)構(gòu)建預(yù)測(cè)模型。專家系統(tǒng)將專家的經(jīng)驗(yàn)和知識(shí)編

碼成規(guī)則,并根據(jù)這些規(guī)則對(duì)未來(lái)的負(fù)載進(jìn)行預(yù)測(cè)。專家系統(tǒng)法對(duì)于

預(yù)測(cè)具有非線性或不確定性特征的負(fù)載變化效果較好。

模糊邏輯法

該算法采用模糊邏輯理論進(jìn)行預(yù)測(cè)。模糊邏輯法將負(fù)載變化的不確定

性因素表示為模糊變量,并根據(jù)模糊規(guī)則進(jìn)行預(yù)測(cè)。模糊邏輯法適用

于處理模糊和不確定的負(fù)載變化。

機(jī)器學(xué)習(xí)算法

機(jī)器學(xué)習(xí)算法通過(guò)訓(xùn)練數(shù)據(jù)來(lái)構(gòu)建預(yù)測(cè)模型。訓(xùn)練數(shù)據(jù)包含歷史負(fù)載

數(shù)據(jù)和影響負(fù)載變化的因素。訓(xùn)練好的機(jī)器學(xué)習(xí)模型可以對(duì)未來(lái)的負(fù)

載進(jìn)行預(yù)測(cè)。常用的機(jī)器學(xué)習(xí)算法包括決策樹(shù)、支持向量機(jī)和神經(jīng)網(wǎng)

絡(luò)。

負(fù)載變化預(yù)測(cè)算法的應(yīng)用場(chǎng)景

負(fù)載變化預(yù)測(cè)算法廣泛應(yīng)用于各種系統(tǒng)中,以實(shí)現(xiàn)負(fù)載感知的自動(dòng)調(diào)

優(yōu),常見(jiàn)應(yīng)用場(chǎng)景包括:

云計(jì)算

云計(jì)算環(huán)境中,負(fù)載變化劇烈且難以預(yù)測(cè)。負(fù)載變化預(yù)測(cè)算法可以幫

助云服務(wù)提供商優(yōu)化資源分配,提高資源利用率和服務(wù)質(zhì)量。

物聯(lián)網(wǎng)

物聯(lián)網(wǎng)設(shè)備產(chǎn)生海量數(shù)據(jù),導(dǎo)致系統(tǒng)負(fù)載變化頻繁。負(fù)載變化預(yù)測(cè)算

法可以幫助物聯(lián)網(wǎng)系統(tǒng)優(yōu)化網(wǎng)絡(luò)資源分配,確保數(shù)據(jù)的及時(shí)傳輸和處

理。

大數(shù)據(jù)分析

大數(shù)據(jù)分析平臺(tái)需要處理大量的數(shù)據(jù),導(dǎo)致系統(tǒng)負(fù)載劇烈變化。負(fù)載

變化預(yù)測(cè)算法可以幫助大數(shù)據(jù)分析平臺(tái)優(yōu)化資源分配,提高分析效率。

在線游戲

在線游戲中,玩家數(shù)量和行為的變化會(huì)導(dǎo)致負(fù)載變化。負(fù)載變化預(yù)測(cè)

算法可以幫助在線游戲平臺(tái)優(yōu)化服務(wù)器資源分配,確保玩家的游戲體

驗(yàn)。

負(fù)載變化預(yù)測(cè)算法的優(yōu)勢(shì)

*提高資源利用率:通過(guò)準(zhǔn)確預(yù)測(cè)負(fù)載變化,系統(tǒng)可以提前優(yōu)化資源

分配,避免資源浪費(fèi)或不足,提高資源利用率。

*改善服務(wù)質(zhì)量:通過(guò)提前調(diào)整系統(tǒng)配置,負(fù)載變化預(yù)測(cè)算法可以確

保系統(tǒng)穩(wěn)定運(yùn)行,減少服務(wù)中斷和性能下降,提高服務(wù)質(zhì)量。

*降低運(yùn)營(yíng)成本:通過(guò)優(yōu)化資源分配,負(fù)載變化預(yù)測(cè)算法可以減少資

源使用,降低運(yùn)營(yíng)成本。

*提高系統(tǒng)靈活性和響應(yīng)能力:負(fù)載變化預(yù)測(cè)算法使系統(tǒng)能夠?qū)ω?fù)載

變化快速做出響應(yīng),提高系統(tǒng)靈活性和響應(yīng)能力。

負(fù)載變化預(yù)測(cè)算法的挑戰(zhàn)

盡管負(fù)載變化預(yù)測(cè)算法具有眾多優(yōu)勢(shì),但在實(shí)際應(yīng)用中仍面臨一些挑

戰(zhàn):

*準(zhǔn)確性:負(fù)載變化預(yù)測(cè)算法的預(yù)測(cè)準(zhǔn)確性受歷史數(shù)據(jù)質(zhì)量、算法模

型和訓(xùn)練數(shù)據(jù)的影響,難以保證絕對(duì)準(zhǔn)確。

*復(fù)雜性:隨著系統(tǒng)復(fù)雜性和負(fù)載變化特性的變化,負(fù)載變化預(yù)測(cè)算

法的模型和算法也需要不斷調(diào)整,增加了算法的復(fù)雜性。

*實(shí)時(shí)性:在某些場(chǎng)景中,負(fù)載變化非常頻繁,需要算法實(shí)時(shí)預(yù)測(cè)負(fù)

載,對(duì)算法的實(shí)時(shí)性和處理速度提出了挑戰(zhàn)。

*可解釋性:一些負(fù)載變化預(yù)測(cè)算法,尤其是機(jī)器學(xué)習(xí)算法,缺乏可

解釋性,使得算法的預(yù)測(cè)結(jié)果難以理解和信任。

結(jié)論

負(fù)載變化預(yù)測(cè)算法是負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)的重要組成部分,通過(guò)預(yù)

測(cè)未來(lái)的負(fù)載變化,系統(tǒng)可以提前做出調(diào)整,滿足負(fù)載變化的需求。

盡管負(fù)載變化預(yù)測(cè)算法面臨一些挑戰(zhàn),但其優(yōu)勢(shì)及其在各種場(chǎng)景中的

廣泛應(yīng)用表明其在優(yōu)化系統(tǒng)性能和降低運(yùn)營(yíng)成本方面具有巨大潛力。

第七部分優(yōu)化算法在自動(dòng)調(diào)優(yōu)中的作用

關(guān)鍵詞關(guān)鍵要點(diǎn)

主題名稱:優(yōu)化算法的分類

1.基于梯度的優(yōu)化算法:利用梯度下降法或共輕梯度法等

方法,通過(guò)迭代更新參數(shù)值逼近最優(yōu)解。

2.無(wú)梯度的優(yōu)化算法:不依賴于梯度信息,利用隨機(jī)采樣、

群體智能等機(jī)制進(jìn)行搜索,包括模擬退火、遺傳算法等。

3.混合優(yōu)化算法:結(jié)合瑞度和無(wú)梯度算法的優(yōu)點(diǎn),充分利

用梯度信息優(yōu)勢(shì),同時(shí)引入隨機(jī)性增強(qiáng)搜索能力。

主題名稱:優(yōu)化算法的超參數(shù)調(diào)優(yōu)

優(yōu)化算法在自動(dòng)調(diào)優(yōu)中的作用

自動(dòng)調(diào)優(yōu)技術(shù)利用優(yōu)化算法系統(tǒng)地搜索參數(shù)空間,尋找應(yīng)用程序性能

最優(yōu)的參數(shù)組合。優(yōu)化算法通過(guò)迭代過(guò)程逐步逼近最優(yōu)解,該過(guò)程包

括評(píng)估不同候選參數(shù)組合并根據(jù)評(píng)估結(jié)果調(diào)整搜索策略。

常用優(yōu)化算法

在自動(dòng)調(diào)優(yōu)中使用的優(yōu)化算法包括:

*進(jìn)化算法:模擬目然選擇和進(jìn)化機(jī)制,通過(guò)交配、變異和選擇來(lái)創(chuàng)

建和改善候選解。

*粒子群優(yōu)化:受鳥類覓食行為的啟發(fā),粒子在搜索空間中移動(dòng),朝

著最佳解區(qū)域不斷收斂。

*貝葉斯優(yōu)化:利用貝葉斯推斷,在搜索空間中生成新的候選解,并

利用先驗(yàn)知識(shí)引導(dǎo)搜索過(guò)程。

*基于模型的優(yōu)化:使用機(jī)器學(xué)習(xí)模型來(lái)預(yù)測(cè)參數(shù)組合的性能,指導(dǎo)

優(yōu)化算法的搜索策略。

優(yōu)化算法的選擇

優(yōu)化算法的選擇取決于應(yīng)用程序的特性和調(diào)優(yōu)問(wèn)題的復(fù)雜性。

*問(wèn)題復(fù)雜性:復(fù)雜問(wèn)題需要更高級(jí)的優(yōu)化算法,如貝葉斯優(yōu)化或基

于模型的優(yōu)化。

*搜索空間尺寸:大規(guī)模搜索空間需要高效的算法,如進(jìn)化算法或粒

子群優(yōu)化。

*目標(biāo)函數(shù)評(píng)估成本:評(píng)估目標(biāo)函數(shù)的成本較高時(shí),貝葉斯優(yōu)化等低

評(píng)估次數(shù)的算法更為合適。

*可微性:如果目標(biāo)函數(shù)不可微,則無(wú)法使用基于梯度的優(yōu)化算法,

如貝葉斯優(yōu)化。

優(yōu)化算法的應(yīng)用

優(yōu)化算法在自動(dòng)調(diào)優(yōu)中的應(yīng)用包括:

*數(shù)據(jù)庫(kù)索引優(yōu)化:優(yōu)化數(shù)據(jù)庫(kù)索引以提高查詢性能。

*機(jī)器學(xué)習(xí)模型訓(xùn)練:調(diào)優(yōu)機(jī)器學(xué)習(xí)模型的超參數(shù),如學(xué)習(xí)率和正則

化參數(shù)。

*云計(jì)算資源配置:優(yōu)化云計(jì)算資源配置,以最小化成本和最大化性

能。

*系統(tǒng)配置:調(diào)優(yōu)操作系統(tǒng)和應(yīng)用程序設(shè)置,以提高性能和穩(wěn)定性。

優(yōu)點(diǎn)

*自動(dòng)化:自動(dòng)調(diào)優(yōu)消除手動(dòng)調(diào)優(yōu)的繁瑣和耗時(shí)的過(guò)程。

*效率:優(yōu)化算法利用啟發(fā)式和概率方法,比手動(dòng)調(diào)優(yōu)更有效地搜索

參數(shù)空間。

*全局最優(yōu)性:優(yōu)化算法旨在找到全局最優(yōu)解,而手動(dòng)調(diào)優(yōu)可能局限

于局部最優(yōu)解。

*魯棒性:針對(duì)不同參數(shù)空間和目標(biāo)函數(shù)的優(yōu)化算法可以適應(yīng)各種調(diào)

優(yōu)問(wèn)題。

局限性

*計(jì)算成本:對(duì)于復(fù)雜的調(diào)優(yōu)問(wèn)題,優(yōu)化算法可能需要大量計(jì)算資源。

*初始解選擇:優(yōu)化算法的性能受初始解選擇的影響。

*超參數(shù)調(diào)優(yōu):優(yōu)化算法本身通常有自己的超參數(shù),需要額外的調(diào)優(yōu)。

*目標(biāo)函數(shù)不準(zhǔn)確:如果目標(biāo)函數(shù)不能準(zhǔn)確表示應(yīng)用程序性能,優(yōu)化

算法可能會(huì)找到次優(yōu)解。

第八部分負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)的應(yīng)用領(lǐng)域

關(guān)鍵詞關(guān)鍵要點(diǎn)

云詞算

1.負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)可自動(dòng)化管理云中虛擬機(jī)的資源

分配,優(yōu)化資源利用率和性能,降低云平臺(tái)運(yùn)營(yíng)成本。

2.技術(shù)可動(dòng)態(tài)調(diào)整虛擬機(jī)內(nèi)存、CPU和存儲(chǔ)資源,根據(jù)實(shí)

際負(fù)載需求進(jìn)行彈性伸縮,確保應(yīng)用程序始終處于最佳性

能狀態(tài)。

3.該技術(shù)可與云監(jiān)控和管理工具集成,提供實(shí)時(shí)的負(fù)載和

性能數(shù)據(jù),幫助運(yùn)維人員快速識(shí)別和解決資源瓶頸問(wèn)題。

大數(shù)據(jù)分析

1.在大數(shù)據(jù)分析領(lǐng)域,英載感知自動(dòng)調(diào)優(yōu)技術(shù)可優(yōu)化分布

式計(jì)算集群的資源分配,確保大規(guī)模數(shù)據(jù)處理任務(wù)的穩(wěn)定

性和效率。

2.技術(shù)可根據(jù)數(shù)據(jù)處理負(fù)載的波動(dòng)自動(dòng)調(diào)整集群節(jié)點(diǎn)的資

源配置,避免資源浪費(fèi)和任務(wù)延誤。

3.通過(guò)優(yōu)化資源利用率,技術(shù)可降低大數(shù)據(jù)分析平臺(tái)的運(yùn)

營(yíng)成本,同時(shí)提高數(shù)據(jù)處理能力和吞吐量。

邊緣計(jì)算

1.在邊緣計(jì)算環(huán)境中,負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)可優(yōu)化邊緣

設(shè)備的資源分配,確保延遲敏感型應(yīng)用的可靠性和性能。

2.技術(shù)可根據(jù)邊緣設(shè)備的實(shí)時(shí)負(fù)載和網(wǎng)絡(luò)狀況調(diào)整資源分

配,優(yōu)化處理能力和響應(yīng)時(shí)間。

3.該技術(shù)有助于邊緣計(jì)算設(shè)備處理海量數(shù)據(jù)并提供實(shí)時(shí)服

務(wù),滿足邊壕端智能化和萬(wàn)物互聯(lián)的需求。

人工智能和機(jī)器學(xué)習(xí)

1.負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)與人工智能和機(jī)器學(xué)習(xí)相結(jié)合,

可提高資源分配的效率和準(zhǔn)確性。

2.技術(shù)利用機(jī)器學(xué)習(xí)算法分析負(fù)載模式和性能指標(biāo),預(yù)測(cè)

未來(lái)負(fù)載需求并做出主動(dòng)調(diào)整。

3.該技術(shù)可優(yōu)化人工智能和機(jī)器學(xué)習(xí)模型的訓(xùn)練和部署過(guò)

程,提升模型性能和效率。

容器編排

1.在農(nóng)器編排環(huán)境中,負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)可優(yōu)化容器

的資源分配,確保容器化應(yīng)用程序的穩(wěn)定運(yùn)行和可擴(kuò)展性。

2.技術(shù)可根據(jù)容器的負(fù)載情況動(dòng)態(tài)調(diào)整容器的CPU、內(nèi)存

和網(wǎng)絡(luò)資源配額,避免容器資源不足或浪費(fèi)。

3.該技術(shù)有助于提高容器編排平臺(tái)的資源利用率和應(yīng)用程

序的可用性,促進(jìn)容器化技術(shù)的廣泛應(yīng)用。

可持續(xù)發(fā)展

1.負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)可優(yōu)化計(jì)算資源的利用率,減少

資源浪費(fèi)和碳排放。

2.技術(shù)通過(guò)減少未使用或低利用率的虛擬機(jī)數(shù)量,降低數(shù)

據(jù)中心的功耗和環(huán)境影啊。

3.該技術(shù)有助于實(shí)現(xiàn)綠色云計(jì)算和可持續(xù)的計(jì)算實(shí)踐,為

企業(yè)和組織提供社會(huì)責(zé)任方面的優(yōu)勢(shì)。

負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)的應(yīng)用領(lǐng)域

負(fù)載感知自動(dòng)調(diào)優(yōu)技術(shù)是一種先進(jìn)的優(yōu)化技術(shù),可用于各種系統(tǒng)和應(yīng)

用程序中,以提高性能、效率和可用性。它通過(guò)持續(xù)監(jiān)視和分析系統(tǒng)

負(fù)載數(shù)據(jù)來(lái)動(dòng)態(tài)調(diào)整系統(tǒng)參數(shù),從而實(shí)現(xiàn)最優(yōu)配置。負(fù)載感知自動(dòng)調(diào)

優(yōu)技術(shù)具有廣泛的應(yīng)用領(lǐng)域,包括:

云計(jì)算

*動(dòng)態(tài)調(diào)整虛擬機(jī)(VM)資源分配,以優(yōu)化應(yīng)用程序性能和資源利用

率。

*擴(kuò)展和縮減云服務(wù),根據(jù)負(fù)載需求提供彈性基礎(chǔ)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論