版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1.2.3絕對值教學(xué)設(shè)計(jì)一、內(nèi)容和內(nèi)容解析1.內(nèi)容本節(jié)課選自湘教版《義務(wù)教育教科書?數(shù)學(xué)》七年級下冊第一章“有理數(shù)”第1.2.3節(jié)“絕對值”。主要內(nèi)容包括:理解絕對值的概念(正數(shù)、負(fù)數(shù)、零的絕對值),掌握用符號“a”表示一個(gè)數(shù)的絕對值,探究絕對值的幾何意義(數(shù)軸上的點(diǎn)到原點(diǎn)的距離),理解絕對值的非負(fù)性,并會求具體數(shù)的絕對值及解簡單的絕對值方程。2.內(nèi)容解析本節(jié)課是在學(xué)生學(xué)習(xí)了有理數(shù)、數(shù)軸、相反數(shù)等知識的基礎(chǔ)上,進(jìn)一步研究有理數(shù)的一個(gè)重要屬性——絕對值。絕對值是連接有理數(shù)運(yùn)算(尤其是后續(xù)學(xué)習(xí)有理數(shù)大小比較、加減法)的核心概念。其代數(shù)定義(三類情況)和幾何意義(距離)是理解和應(yīng)用的關(guān)鍵。掌握絕對值的概念和性質(zhì),不僅為后續(xù)學(xué)習(xí)有理數(shù)的運(yùn)算規(guī)則、解決實(shí)際問題奠定基礎(chǔ),也是培養(yǎng)學(xué)生抽象思維、數(shù)形結(jié)合思想和應(yīng)用意識的重要載體。二、目標(biāo)和目標(biāo)解析1.目標(biāo)(1)借助生活實(shí)例和數(shù)軸,理解絕對值的概念及其幾何意義,初步發(fā)展數(shù)學(xué)抽象能力。(2)經(jīng)歷觀察、歸納、驗(yàn)證的過程,掌握求一個(gè)數(shù)絕對值的方法,理解絕對值的非負(fù)性,感悟分類討論的數(shù)學(xué)思想。(3)會求具體有理數(shù)的絕對值,能解形如x=a(a≥0)的簡單方程,并能運(yùn)用絕對值的概念解釋或解決簡單的實(shí)際問題,發(fā)展運(yùn)算能力和應(yīng)用意識。2.目標(biāo)解析通過本節(jié)課的學(xué)習(xí),學(xué)生需要從實(shí)際情境(如只關(guān)心路程遠(yuǎn)近不關(guān)心方向)中抽象出絕對值的數(shù)學(xué)本質(zhì),理解其“距離”屬性,體會數(shù)學(xué)與生活的聯(lián)系。學(xué)生應(yīng)能熟練運(yùn)用代數(shù)定義(分正、負(fù)、零三類情況)和幾何意義求任何有理數(shù)的絕對值,并能結(jié)合數(shù)軸進(jìn)行理解和驗(yàn)證。在求解簡單絕對值方程和解決實(shí)際問題的過程中,學(xué)生應(yīng)能運(yùn)用分類討論和數(shù)形結(jié)合的思想方法,為后續(xù)學(xué)習(xí)更復(fù)雜的代數(shù)問題和幾何問題積累經(jīng)驗(yàn),提升數(shù)學(xué)核心素養(yǎng)。三、教學(xué)問題診斷分析概念抽象困難:學(xué)生可能難以從“路程”等生活實(shí)例完全抽象到“數(shù)軸上點(diǎn)到原點(diǎn)的距離”這一幾何概念,對絕對值表示“距離”而非“方向”的理解可能不深刻。分類討論不完整:在利用代數(shù)定義求絕對值時(shí),學(xué)生容易忽略負(fù)數(shù)和零的情況,或者在解x=a時(shí),忘記a≥0的前提或x的負(fù)值解。幾何意義應(yīng)用不熟練:將絕對值與數(shù)軸上的距離對應(yīng)起來,并用此來比較大小或解釋概念,對學(xué)生來說可能存在一定障礙,難以快速在數(shù)與形之間轉(zhuǎn)換。符號理解混淆:對絕對值符號“”的理解和書寫可能不準(zhǔn)確,容易與括號或相反數(shù)符號混淆。四、教學(xué)過程設(shè)計(jì)(一)情景引入問題1:小明在一條東西方向的人行道上散步。他從起點(diǎn)先向東走了3公里,然后又向西走了5公里。我們關(guān)心他總共走了多少公里的路程?這個(gè)“路程”與他最終在起點(diǎn)東邊還是西邊有關(guān)系嗎?(答:路程是8公里;這個(gè)路程與他最終的位置方向無關(guān),只關(guān)心他移動的總長度)問題2:在數(shù)軸上,表示+3的點(diǎn)和表示3的點(diǎn),它們有什么共同點(diǎn)?它們與表示0的點(diǎn)(原點(diǎn))的距離分別是多少?(答:+3和3是互為相反數(shù)的點(diǎn);它們到原點(diǎn)的距離都是3個(gè)單位長度)問題3:結(jié)合問題1和問題2,你能發(fā)現(xiàn)“路程”和數(shù)軸上點(diǎn)到原點(diǎn)的“距離”有什么共同特征嗎?在數(shù)學(xué)上,我們用什么來表示一個(gè)數(shù)對應(yīng)的點(diǎn)到原點(diǎn)的距離?(引導(dǎo)學(xué)生說出:它們都只關(guān)心“大小”或“長度”,不關(guān)心方向;引出“絕對值”概念)設(shè)計(jì)意圖:通過學(xué)生熟悉的生活實(shí)例(路程)和已學(xué)知識(數(shù)軸、相反數(shù)),引導(dǎo)學(xué)生體會“只關(guān)心量的大小而忽略方向”的現(xiàn)實(shí)需求,自然地抽象出“距離”概念,并遷移到數(shù)軸上點(diǎn)到原點(diǎn)的距離,從而引出“絕對值”的課題。此過程旨在培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力和應(yīng)用意識,體會數(shù)形結(jié)合思想,對應(yīng)目標(biāo)(1)。(二)合作探究1探究1:教師:我們知道了+3和3到原點(diǎn)的距離都是3。那么,+4.5到原點(diǎn)的距離是多少?2到原點(diǎn)的距離是多少?0到原點(diǎn)的距離是多少?(答:4.5;2;0)教師:在數(shù)學(xué)上,我們把一個(gè)數(shù)在數(shù)軸上對應(yīng)的點(diǎn)到原點(diǎn)的距離叫做這個(gè)數(shù)的絕對值(absolutevalue)。例如,+3的絕對值是3,記作+3=3;3的絕對值也是3,記作=3;0的絕對值是0,記作=0。教師:請同學(xué)們觀察以下數(shù)的絕對值:=?=?=?/2=?=?(引導(dǎo)學(xué)生計(jì)算并回答:5,7,0,0.5,3.2)追問:觀察這些計(jì)算結(jié)果,你能歸納出正數(shù)、負(fù)數(shù)和零的絕對值分別有什么規(guī)律嗎?(學(xué)生討論歸納)教師總結(jié):正數(shù)(如5,1/2)的絕對值是它本身。負(fù)數(shù)(如7,3.2)的絕對值是它的相反數(shù)。零(0)的絕對值是0。教師:為了簡便,我們常用字母表示數(shù)。如果a表示一個(gè)數(shù),則a的絕對值記作a。你能用數(shù)學(xué)語言概括上述規(guī)律嗎?(引導(dǎo)學(xué)生得出):當(dāng)時(shí)當(dāng)時(shí)當(dāng)時(shí)|強(qiáng)調(diào):當(dāng)a<0時(shí),a是正數(shù)。教師:從上面的定義和例子,你能發(fā)現(xiàn)任何數(shù)的絕對值是一個(gè)什么數(shù)?(引導(dǎo)學(xué)生觀察結(jié)果:3,7,0,0.5,3.2都是非負(fù)數(shù))總結(jié):一個(gè)數(shù)的絕對值一定是一個(gè)非負(fù)數(shù)。即a≥0。(三)鞏固練習(xí)1判斷下列說法是否正確:(1)絕對值等于它本身的數(shù)一定是正數(shù)。()(2)絕對值等于7的數(shù)只有7。()(3)絕對值最小的數(shù)是0。()答:(1)×(0的絕對值也等于它本身)(2)×(還有7)(3)√知識點(diǎn):理解絕對值的非負(fù)性、代數(shù)定義及幾何意義(數(shù)軸上與原點(diǎn)距離為7的點(diǎn)有兩個(gè))。(四)合作探究2探究2:教師:在數(shù)軸上畫出表示4,4,2,2的點(diǎn)A,B,C,D。請描述點(diǎn)A,B到原點(diǎn)O的距離?點(diǎn)C,D到原點(diǎn)O的距離?(答:點(diǎn)A(4)和點(diǎn)B(4)到O的距離都是4;點(diǎn)C(2)和點(diǎn)D(2)到O的距離都是2)教師:計(jì)算,,,的值分別是多少?(答:4,4,2,2)追問:比較一下數(shù)軸上點(diǎn)到原點(diǎn)的距離和這個(gè)點(diǎn)表示的數(shù)的絕對值,你發(fā)現(xiàn)了什么?猜想:一個(gè)數(shù)在數(shù)軸上對應(yīng)的點(diǎn)到原點(diǎn)的距離,就是這個(gè)數(shù)的絕對值。驗(yàn)證:任意取幾個(gè)數(shù)(如+5,3.1,0),在數(shù)軸上標(biāo)出它們對應(yīng)的點(diǎn),測量這些點(diǎn)到原點(diǎn)的距離,再計(jì)算它們的絕對值,驗(yàn)證兩者相等。教師總結(jié):絕對值的幾何意義:一個(gè)數(shù)a的絕對值a就是數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離。這是理解絕對值概念的重要視角。探究3:教師:根據(jù)絕對值的幾何意義(距離),你能解釋為什么a≥0嗎?(答:距離不可能是負(fù)數(shù))教師:根據(jù)絕對值的幾何意義,互為相反數(shù)的兩個(gè)數(shù),如+3和3,它們的絕對值為什么相等?(答:表示+3和3的點(diǎn)位于原點(diǎn)兩側(cè)且到原點(diǎn)距離相同,都是3個(gè)單位長度)教師:如果已知a=8.7,你能求出a的值嗎?為什么?(引導(dǎo)學(xué)生思考:表示數(shù)a的點(diǎn)到原點(diǎn)的距離是8.7,這樣的點(diǎn)在原點(diǎn)左右各有一個(gè),分別是+8.7和8.7。所以a=8.7或a=8.7。引出簡單絕對值方程)設(shè)計(jì)意圖:通過具體數(shù)在數(shù)軸上的表示,引導(dǎo)學(xué)生觀察、測量、計(jì)算、比較,從幾何角度直觀驗(yàn)證絕對值的概念及其性質(zhì)(非負(fù)性、互為相反數(shù)的兩數(shù)絕對值相等),并利用幾何意義解釋代數(shù)結(jié)論和求解簡單方程。此過程旨在深化學(xué)生對絕對值本質(zhì)的理解(數(shù)形結(jié)合),培養(yǎng)幾何直觀能力和推理能力,體驗(yàn)分類討論思想,對應(yīng)目標(biāo)(1)(2)。(五)典例分析例1(教材例5):求下列各數(shù)的絕對值:0.36解:正數(shù)的絕對值是它本身|正數(shù)的絕對值是它本身|負(fù)數(shù)的絕對值是它的相反數(shù)?負(fù)數(shù)的絕對值是它的相反數(shù)|?零的絕對值是零|知識點(diǎn):直接應(yīng)用絕對值的代數(shù)定義進(jìn)行計(jì)算。注意分?jǐn)?shù)和小數(shù)的處理。例2(教材例6):若a=8.7,求a。解:因?yàn)榻^對值等于8.7的數(shù)有兩個(gè),它們分別是8.7和8.7。所以a=8.7或a=8.7。知識點(diǎn):利用絕對值的幾何意義(數(shù)軸上與原點(diǎn)距離為8.7的點(diǎn)有兩個(gè))或代數(shù)定義(a=8.7意味著a=8.7或a=8.7)求解簡單絕對值方程。強(qiáng)調(diào)解有兩個(gè)。例3(應(yīng)用):某工廠生產(chǎn)零件,標(biāo)準(zhǔn)長度為10cm。質(zhì)檢員隨機(jī)抽取6個(gè)零件測量,記錄下它們與標(biāo)準(zhǔn)長度的偏差(單位:cm):+0.02,0.03,0.05,+0.04,0.01,+0.06。哪個(gè)零件的實(shí)際長度最接近標(biāo)準(zhǔn)長度?說明理由。解:實(shí)際長度與標(biāo)準(zhǔn)長度的接近程度,取決于偏差的絕對值。偏差的絕對值越小,表示實(shí)際長度與標(biāo)準(zhǔn)長度相差越小,就越接近。計(jì)算各偏差的絕對值:+0.02=0.02,=0.03,=0.05,+0.04=0.04,=0.01,+0.06=0.06.比較大小:0.01<0.02<0.03<0.04<0.05<0.06.偏差為0.01的零件,其偏差的絕對值最?。?.01),所以它的實(shí)際長度最接近標(biāo)準(zhǔn)長度(10cm)。知識點(diǎn):應(yīng)用絕對值的實(shí)際意義(表示偏差的大小,即與標(biāo)準(zhǔn)值的距離)解決實(shí)際問題。體會數(shù)學(xué)的應(yīng)用價(jià)值。設(shè)計(jì)意圖:通過典型例題示范解題步驟和格式。例1鞏固絕對值的代數(shù)計(jì)算;例2示范利用絕對值概念求解簡單方程,強(qiáng)調(diào)解的個(gè)數(shù)和幾何背景;例3聯(lián)系生活實(shí)際,展示如何用絕對值(表示“距離”或“誤差大小”)解決實(shí)際問題,培養(yǎng)學(xué)生應(yīng)用意識和分析能力,對應(yīng)目標(biāo)(3)。(六)鞏固練習(xí)基礎(chǔ)題:(1)求下列各數(shù)的絕對值:2010,3.14,,2.8.知識點(diǎn):絕對值計(jì)算(整數(shù)、小數(shù)、分?jǐn)?shù))。(2)填空:?|?2010|=________(答:2010|?4.8|=________(答:4.8|?1|?58=(3)若x=0.5,求x的值。(答:x=0.5或x=0.5知識點(diǎn):解簡單絕對值方程)概念題:(1)一個(gè)數(shù)的絕對值是它本身,這個(gè)數(shù)是________。(答:非負(fù)數(shù)(或正數(shù)和零)知識點(diǎn):絕對值的代數(shù)定義及非負(fù)性)(2)一個(gè)數(shù)的絕對值是它的相反數(shù),這個(gè)數(shù)是________。(答:非正數(shù)(或負(fù)數(shù)和零)知識點(diǎn):絕對值的代數(shù)定義)(3)絕對值小于3的所有整數(shù)是________。(答:2,1,0,1,2知識點(diǎn):絕對值的幾何意義(到原點(diǎn)距離小于3)及整數(shù)概念)數(shù)軸題(描述):想象一條數(shù)軸。(1)標(biāo)出表示絕對值等于2的數(shù)的點(diǎn)。(答:表示+2和2的點(diǎn))(2)標(biāo)出表示絕對值等于3.5的數(shù)的點(diǎn)。(答:表示+3.5和3.5的點(diǎn))(3)標(biāo)出表示絕對值等于0的數(shù)的點(diǎn)。(答:原點(diǎn)(0))知識點(diǎn):應(yīng)用絕對值的幾何意義在(想象的)數(shù)軸上定位。設(shè)計(jì)意圖:設(shè)計(jì)分層練習(xí)鞏固所學(xué)。基礎(chǔ)題強(qiáng)化計(jì)算技能和方程解法;概念題辨析易錯(cuò)點(diǎn),加深對定義和性質(zhì)的理解;數(shù)軸題(通過語言描述想象)強(qiáng)化幾何直觀。通過及時(shí)練習(xí)反饋學(xué)習(xí)效果,查漏補(bǔ)缺,發(fā)展運(yùn)算能力和推理能力,對應(yīng)目標(biāo)(2)(3)。(七)歸納總結(jié)知識要點(diǎn)內(nèi)容描述關(guān)鍵點(diǎn)/注意絕對值的定義代數(shù)定義:a=a(a>0)01.分三類(正、零、負(fù))。2.當(dāng)a<0時(shí),a=a>0。絕對值的性質(zhì)1.非負(fù)性:任何有理數(shù)的絕對值都是一個(gè)非負(fù)數(shù)。即a≥0。2.互為相反數(shù)的兩個(gè)數(shù)的絕對值相等。即a=a。3.若a=b(b≥0),則a=b或a=b。1.最小絕對值是0。2.解x=b(b≥0)時(shí),解為x=±b。若b<0,方程無解。應(yīng)用1.求具體數(shù)的絕對值。2.解形如x=a(a≥0)的方程。3.表示距離、誤差大小等實(shí)際量。結(jié)合數(shù)軸理解更直觀。(八)感受中考(2024廣西)計(jì)算:+=()A.1B.1C.5D.5答:C.5解析:直接計(jì)算絕對值:=3,=2,3+2=5。知識點(diǎn):求絕對值并進(jìn)行加法運(yùn)算。(2023青海)下列各數(shù)中,絕對值最大的數(shù)是()A.5B.0C.3D.1/2答:A.5(2024日照)若實(shí)數(shù)a滿足a1=3,則a的值是________。(本題略有延伸,但核心仍是絕對值概念)答:a=4或a=2解析:根據(jù)絕對值的意義,數(shù)a1的絕對值等于3,即表示a1的點(diǎn)到原點(diǎn)的距離是3。所以a1=3或a1=3。解得a=4或a=2。知識點(diǎn):解形如x=b的方程(此處x是a1)。理解絕對值的幾何意義或代數(shù)定義的應(yīng)用。(2022某地模擬)質(zhì)檢員抽查某品牌電池的電壓(標(biāo)準(zhǔn)電壓1.5V),記錄偏差如下:+0.02V,0.01V,0.03V,+0.05V。其中質(zhì)量最好(即實(shí)際電壓最接近標(biāo)準(zhǔn)電壓)的是偏差為________的電池。答:0.01V解析:實(shí)際電壓與標(biāo)準(zhǔn)電壓1.5V的接近程度取決于偏差的絕對值。計(jì)算:+0.02,,,+0.05。0.01最小,所以偏差為0.01V的電池最接近標(biāo)準(zhǔn)電壓。知識點(diǎn):應(yīng)用絕對值的實(shí)際意義(表示誤差大小)解決問題。設(shè)計(jì)意圖:在學(xué)習(xí)完知識后加入中考真題練習(xí),不僅可以幫助學(xué)生明確考試方向,熟悉考試題型,檢驗(yàn)學(xué)習(xí)成果,提升應(yīng)考能力,還可以提升學(xué)生的學(xué)習(xí)興趣和動力。(九)小結(jié)梳理核心概念相互關(guān)系與應(yīng)用絕對值定義基礎(chǔ)(代數(shù)三類/幾何距離)非負(fù)性核心性質(zhì)1(a≥0)→最小值為0/解方程x=b要求b≥0對稱性核心性質(zhì)2(a=a)→數(shù)軸上原點(diǎn)對稱的點(diǎn)絕對值相等/解方程x=b的解成對出現(xiàn)(x=±b)幾何意義理解工具&應(yīng)用橋梁距離→解釋非負(fù)性/對稱性/解方程/比較大小/解決實(shí)際問題(如誤差、距離問題)代數(shù)運(yùn)算基本技能求值/解簡單方程x=b→依賴定義和性質(zhì)實(shí)際應(yīng)用價(jià)值體現(xiàn)用絕對值表示“量的大小、距離、誤差幅度”等忽略方向的實(shí)際問題→依賴幾何意義和數(shù)值計(jì)算能力(十)布置作業(yè)必做題:教材習(xí)題1.2:第6題(求具體數(shù)的絕對值:20,20,3/2,4/3)。教材習(xí)題1.2:第7題(若a/4,求a)。教材習(xí)題1.2:第8題(想象數(shù)軸,標(biāo)出表示x,x,x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 交通設(shè)施養(yǎng)護(hù)維修制度
- 2026湖北省定向西北工業(yè)大學(xué)選調(diào)生招錄參考題庫附答案
- 2026湖南財(cái)政經(jīng)濟(jì)學(xué)院招聘勞務(wù)派遣性質(zhì)工作人員參考題庫附答案
- 2026福建泉州市面向北京科技大學(xué)選優(yōu)生選拔引進(jìn)參考題庫附答案
- 2026福建省面向華中師范大學(xué)選調(diào)生選拔工作考試備考題庫附答案
- 2026福建福州第十九中學(xué)招聘編外行政人員(勞務(wù)派遣)1人考試備考題庫附答案
- 2026西藏林芝市察隅縣農(nóng)村公益電影放映人員招聘1人備考題庫附答案
- 2026遼寧大連產(chǎn)業(yè)園社招招聘備考題庫附答案
- 2026陜西省面向南開大學(xué)招錄選調(diào)生備考題庫附答案
- 2026魯南技師學(xué)院第一批招聘教師8人參考題庫附答案
- 養(yǎng)生館運(yùn)營成本控制與盈利模型
- 2025年廣東高校畢業(yè)生三支一扶考試真題
- DBJ-T 13-417-2023 工程泥漿技術(shù)標(biāo)準(zhǔn)
- 湖南省長沙市雅禮教育集團(tuán)2024-2025學(xué)年七年級(下)期末數(shù)學(xué)試卷
- 鋁業(yè)廠房建設(shè)項(xiàng)目施工組織方案
- DB63-T 2256.3-2025 水利信息化工程施工質(zhì)量評定規(guī)范 第3部分 水情監(jiān)測系統(tǒng)
- 患者身份識別錯(cuò)誤應(yīng)急預(yù)案與處理流程
- 25年軍考數(shù)學(xué)試卷及答案
- 化工儲存設(shè)備知識培訓(xùn)課件
- 血透室水處理維護(hù)課件
- 浙江省寧波市2024-2025學(xué)年第二學(xué)期期末九校聯(lián)考高二英語試題(含答案)
評論
0/150
提交評論