版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省荊州中學(xué)2024-2025學(xué)年高二下學(xué)期3月月考數(shù)學(xué)試卷
學(xué)校:姓名:班級(jí):考號(hào):
一、單選題
1.已知函數(shù)/'(x)=2/'(e)x+&J,則/'(e)=()
,111
A.-1B.—C.—D.-----
2e2e
2.在等差數(shù)列{4}中,為其前〃項(xiàng)和,若的+&+心=25,則品=
A.60C.90
3.函數(shù)/⑺=3/-7/的極值點(diǎn)是(
A.-1,0,1
C.(-1,4),(0,0),(1,-4)(—1,4),(1,-4)
4.將8個(gè)數(shù)學(xué)競(jìng)賽名額全部分給4個(gè)不同的班,每個(gè)班至少有1個(gè)名額,則不同的分配方
案種數(shù)為()
A.15B.35C.56D.70
22
5.如圖,已知橢圓^+彳=1(°>6>0),Fi、乃分別為橢圓的左、右焦點(diǎn),/為橢圓的上
頂點(diǎn),直線/仍交橢圓于另一點(diǎn)2,若NFiAB=90。,則此橢圓的離心率為()
A
6.如圖,一環(huán)形花壇分成4B,C,。四塊,現(xiàn)有4種不同的花供選種,要求在每塊里種1
種花,且相鄰的2塊種不同的花,則不同的種法總數(shù)為
試卷第1頁(yè),共4頁(yè)
B.84C.60D.48
7.設(shè)數(shù)列{。/的前幾項(xiàng)和為S〃,若qm=2后+1,且4=1,則()
A.%<5B.a5>10C.^oo>1000D.5100<10000
/、IInx.x>0/、
8.已知函數(shù)〃x)=,若方程/(無(wú))="有三個(gè)不同的實(shí)數(shù)根%,%,%,且
IOX?X、U
再<%<X3,則為.蛇三J的取值范圍是()
x2+13
43。)B.34C.r3片]D/一)
11—3eJ11—3e2)133e—1)(3e)
二、多選題
9.若45,C,D,E五人并排站成一排,下列說(shuō)法正確的是()
A.如果42必須相鄰且8在A的右邊,那么不同的排法有24種
B.最左端只能排A或3,最右端不能排A,則不同的排法共有42種
C.43不相鄰的排法種數(shù)為72種
D.48,C按從左到右的順序排列的排法有120種
10.已知實(shí)數(shù)x/滿(mǎn)足曲線C的方程/+/-2式-2=0,則下列選項(xiàng)正確的是()
A.x?+/的最大值是6+]
B.——^的最大值是2+幾
c.|無(wú)一y+3怕勺最小值是2行一6
D.過(guò)點(diǎn)(0,后)作曲線。的切線,貝U切線方程為x-拒y+2=0
X
II.已知函數(shù)〃x)=7—,下列結(jié)論正確的是()
inx
A.〃x)在區(qū)間(l,e)單調(diào)遞減,在區(qū)間(e,+◎單調(diào)遞增
B.“X)有極小值,且極小值是〃x)的最小值
試卷第2頁(yè),共4頁(yè)
C.設(shè)g(x)=x2+a,若對(duì)任意再eR,都存在%e(1,+°°),使g(%)=/(%)成立,則a1
D.71">3">7t3>33
三、填空題
12.過(guò)點(diǎn)(-1,2)且在坐標(biāo)軸上的截距相等的直線的斜率是.
13.將6名學(xué)生分配到甲、乙兩個(gè)宿舍中,每個(gè)宿舍至少安排兩名學(xué)生,不同的分配方案有
種.(用數(shù)字作答)
14.已知數(shù)列{%}、低}均為正項(xiàng)等比數(shù)列,Pn、分別為數(shù)列{%}、{“}的前〃項(xiàng)積,且
InP5n—7Ina.
號(hào)=^—,則笠的值為_(kāi)__________.
In0〃2nlnp3
四、解答題
15.已知函數(shù)/(x)=,-x-31nx.
(1)求〃x)的圖象在點(diǎn)(1,7(1))處的切線方程;
(2)求/(x)在[;,3]上的最大值與最小值.
16.在四棱錐尸-4BC。中,底面4BC。為直角梯形,AD//BC,AD1AB,側(cè)面尸48,底
面/BCD,PA=PB=AD=-BC=2,且£,尸分別為尸C,CD的中點(diǎn),
2
(1)證明:DE〃平面P/B;
(2)若直線PF與平面PAB所成的角為60°,求平面PAB與平面PCD所成銳二面角的余弦值.
2
17.已知雙曲線^-一y2=l.
4
⑴過(guò)尸(-1,0)的直線4與雙曲線有且只有一個(gè)公共點(diǎn),求直線4的斜率;
⑵若直線/2號(hào)=丘+加與雙曲線相交于48兩點(diǎn)(A,8均異于左、右頂點(diǎn)),且以線段
試卷第3頁(yè),共4頁(yè)
為直徑的圓過(guò)雙曲線的左頂點(diǎn)c試問(wèn):直線4是否過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,
說(shuō)明理由.
18.數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+l)(nGN*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{%}滿(mǎn)足:?!岸?金+占+…+占,求數(shù)列{、}的通項(xiàng)公式;
(3)令c,=牛(nGN*),求數(shù)列{Cn}的前n項(xiàng)和Tn.
19.英國(guó)數(shù)學(xué)家泰勒發(fā)現(xiàn)的泰勒公式有如下特殊形式:當(dāng)/(X)在x=0處〃(〃eN*)階導(dǎo)
數(shù)都存在時(shí),/3=〃0)+八0》+*^2+空力3+...+。^尤"+....注:/"(X)表
示/(X)的2階導(dǎo)數(shù),即為了'(X)的導(dǎo)數(shù),/w(x)(〃23)表示的〃階導(dǎo)數(shù),該公式
也稱(chēng)麥克勞林公式.
⑴寫(xiě)出t(x)=/L泰勒展開(kāi)式(只需寫(xiě)出前4項(xiàng));
(2)根據(jù)泰勒公式估算sin;的值,精確到小數(shù)點(diǎn)后兩位;
X2
(3)證明:當(dāng)工20時(shí),ex---sinx-cosx>0.
試卷第4頁(yè),共4頁(yè)
《湖北省荊州中學(xué)2024-2025學(xué)年高二下學(xué)期3月月考數(shù)學(xué)試卷》參考答案
題號(hào)12345678910
答案CBBBCBCAABCBD
題號(hào)11
答案ACD
1.C
In
【分析】根據(jù)題意,求得析(x)=2/(e)+TX,令XK,即可求解.
【詳解】由函數(shù)〃x)=2/(e)x+#f,
可得r(x)=2/(e)+gx21nxx;=2r(e)+F,
令%=6,可得廣(e)=2/(e)+L所以/(e)=」.
ee
故選:c.
2.B
【分析】由條件,利用等差數(shù)列下標(biāo)和性質(zhì)可得%=莖25,進(jìn)而得到結(jié)果.
【詳解】/+%+%=&+%+g=3%=25,即%=三,而跖=9(%;%)_%=9x^-=75,
故選B.
【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查運(yùn)算能力與推理能力,屬于中檔題.
3.B
【分析】根據(jù)函數(shù)極值點(diǎn)的定義求解即可.
【詳解】由/(x)=3尤7-7尤3,貝U/(x)=2lx,-2lx?=21/(/-1)=21/(x+1)(x-1)(/+1),
令得尤<-1或x>l;令/<x)<0,得-l<x<0或0<x<l,J3.
r(o)=r(i)=r(-i)=o,
所以函數(shù)/(X)在(-雙-1)和(1,+“)上單調(diào)遞增,在上單調(diào)遞減,則函數(shù)/(X)的極值
點(diǎn)為-1,1.
故選:B.
4.B
【分析】根據(jù)題意,結(jié)合“隔板法”,即可求解.
答案第1頁(yè),共12頁(yè)
【詳解】將8個(gè)數(shù)學(xué)競(jìng)賽名額全部分給4個(gè)不同的班,每個(gè)班至少有1個(gè)名額,
可類(lèi)比為用3個(gè)隔板插入8個(gè)小球中間的空隙中,將球分成4堆,
由于8個(gè)小球中間共有7個(gè)空隙,因此共有C;=35種不同的分法.
故選:B.
5.C
【分析】由/R48=90。,得△尸為等腰直角三角形,從而得6=c,易得離心率.
【詳解】若/BAB=90。,則△E/仍為等腰直角三角形,所以有。尸|。咫,即6=c.
所以。=-\/2c,e=-=-
a2
故選:C.
6.B
【詳解】解:分三類(lèi):種兩種花有團(tuán)種種法;
種三種花有2期種種法;
種四種花有㈤種種法.
共有2/;+/;+/:=84.
故選B
7.C
【分析】根據(jù)給定條件,利用。用=S,M-S“,結(jié)合已知變形構(gòu)造數(shù)列,求出耳,進(jìn)而求出%
即可判斷得解.
【詳解】數(shù)列{%}中,由?!?26+1,得S“+「S”=2庖+1,整理得SM=(折+1>,
則瓦=區(qū)+1,數(shù)歹網(wǎng)后}是以同=6=1為首項(xiàng),1為公差的等差數(shù)列,
于是瘋'=〃n*+i=2〃+1,BP5,,=rr,an=2n-l(w>2),而%=1滿(mǎn)足上式,
2
因此S,=",%=2"-1,as=9,5100=10000,ABD錯(cuò)誤,C正確.
故選:C
8.A
答案第2頁(yè),共12頁(yè)
【分析】設(shè)g(x)=x,由題意g(x)=Q有三個(gè)不同的實(shí)數(shù)根%,%2,七,利用導(dǎo)數(shù)
3+-x<0
得出其單調(diào)區(qū)間,得出其函數(shù)圖像,數(shù)形結(jié)合得出為的范圍,由
ln(x2x3)_lnx2+lnx3QX,+ax.一
-----------------------X]------------------------------七方:可得出答案.
x2+x3x2+x3
【詳解】解:方程/(x)=",顯然x=0不為該方程的實(shí)數(shù)根,
Inx八
——x>0
設(shè)g(x)=<%,
3+-x<0
、x
即方程/(力="有三個(gè)不同的實(shí)數(shù)根X],%,%,
即g(X)=。有三個(gè)不同的實(shí)數(shù)根%%,馬,
、“八q/\InxE,/、1-lnx
當(dāng)x>0時(shí),g(x)=——,貝!Jg(x)=—,
由g<x)>0,可得0<x<e;g'(無(wú))<0,可得x>e,
所以g(x)在(0,e)上單調(diào)遞增,在(e,+8)上單調(diào)遞減,
且當(dāng)x>l時(shí),g(x)>0,當(dāng)xf+co時(shí),g(x)f0
從而作出g(x)的大致圖像.
麻
由圖可知當(dāng)0<。<!時(shí),直線>與函數(shù)的圖象有3個(gè)交點(diǎn),
e
即方程g(x)=。有三個(gè)不同的實(shí)數(shù)根.
由3+2=4,得工=2,
xel-3e
2?
由3H—=0,得N=一;,
x3
答案第3頁(yè),共12頁(yè)
所以網(wǎng){言-,-力
1l—3e3)
所以占?蛇M(jìn)=玉a+i-=玉-土色=3=3玉吆工工,o].
x2+x3x2+x3x2+x311-3eJ
故選:A.
【點(diǎn)睛】易錯(cuò)點(diǎn)點(diǎn)睛:在畫(huà)8(》)=?的圖象時(shí)注意其函數(shù)值的取值范圍.
9.ABC
【分析】A選項(xiàng)通過(guò)捆綁法即可判斷;B選項(xiàng)分A在最左端和8在最左端兩種情況考慮;C
選項(xiàng)利用插空法判斷;
D選項(xiàng)用48,C,A1的全排列除以4SC的全排列即可.
【詳解】A選項(xiàng):把48綁在一起,且3在A的右邊,有團(tuán)=24種,A正確;
B選項(xiàng):若A在最左端,則有團(tuán)=24種,若B在最左端,則有=18種,共有24+18=42
種,B正確;
C選項(xiàng):先排C,O,E,再把42插入空中,有=72種,C正確;
D選項(xiàng):有岑=20種,D錯(cuò)誤.
故選:ABC.
10.BD
【分析】由/+/表示圓C上的點(diǎn)到定點(diǎn)。(0,0)的距離的平方,可判定A錯(cuò)誤;由匕?■表
示圓上的點(diǎn)與點(diǎn)尸(-1,-1)的斜率左,設(shè)匕2=后,結(jié)合點(diǎn)到直線的距離公式,列出不等式,
可判定B正確;由卜一尸3|表示圓上任意一點(diǎn)到直線了7+3=0的距離的血倍,進(jìn)而可判
定C錯(cuò)誤;根據(jù)點(diǎn)(0,后)在圓C上,結(jié)合圓的切線的性質(zhì),可判定D正確.
【詳解】由圓C:X2+J?-2X-2=0可化為(x7『+V=3,可得圓心(1,0),半徑為r=g,
對(duì)于A中,由/+/表示圓c上的點(diǎn)到定點(diǎn)0(0,0)的距離的平方,
所以它的最大值為口(1-Op+02+GF=4+26,所以A錯(cuò)誤;
對(duì)于B中,空表示圓上的點(diǎn)與點(diǎn)尸(T-1)的斜率M設(shè)空=3即了+1=左(尤+1),
x+1X+1
答案第4頁(yè),共12頁(yè)
由圓心(1,0)到直線y+l=Mx+l)的距離d=電』解得2-新《心2+曲,
yjk+1
所以空■的最大值為2+幾,所以B正確;
對(duì)于C中,由歸->+3|表示圓上任意一點(diǎn)到直線X->+3=0的距離的百倍,
圓心到直線的距離4=美=2亞,所以其最小值為亞(2拒-百)=4-幾,所以C錯(cuò)誤;
對(duì)于D中,因?yàn)辄c(diǎn)(0,7^滿(mǎn)足圓C的方程,即點(diǎn)(0,3)在圓C上,
則點(diǎn)C與圓心連線的斜率為左=-行,
]/?
根據(jù)圓的性質(zhì),可得過(guò)點(diǎn)(0,收)作圓c的切線的斜率為a=-亳=妹,
所以切線方程為y-亞=[(x-0),即x-后y+2=0,所以D正確.
故選:BD.
11.ACD
【分析】首先確定定義域XE(0,l)U(l,+8),根據(jù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及最值,逐項(xiàng)分
析判斷即可得解.
fx>0
【詳解】由?八,可得X£(0,l)U(l,+8),
[InwO
求導(dǎo)可得了'(x)=¥U,
(Inx)
由/(x)=0,可得x=e,
當(dāng)xe(0,l),xe(l,e)時(shí),/'(無(wú))<0,〃x)為減函數(shù),
當(dāng)xe(e,+oo)時(shí),f\x)>0,/(x)為增函數(shù),故A正確;
對(duì)B,7(x)的極小值為/(e)=e>0,而/(:)=-二人<0,
22In2
故極小值不是最小值,故B錯(cuò)誤;
對(duì)C,“X)在(1,+到上的值域包含g(x)在R上的值域,
由xe(l,e)時(shí),/(x)為減函數(shù),
當(dāng)xe(e,+co)時(shí),/(x)為增函數(shù),
故〃尤)的值域?yàn)椴?十⑹,
答案第5頁(yè),共12頁(yè)
由g(x)在R上的值域?yàn)閇凡+00),
所以“Ne,故C正確;
對(duì)D,由兀>3>e,所以〃兀)>/(3),
3
所以--->---,兀In3>3In兀,
In7iIn3
即3">兀3,又曰>3",兀3
故/>3">33成立,故D正確.
故選:ACD
12.-2或-1
【分析】分直線過(guò)原點(diǎn)和不過(guò)原點(diǎn)兩種情況求解即可.
【詳解】當(dāng)直線過(guò)原點(diǎn)時(shí),在坐標(biāo)軸上的截距都為0,
此時(shí)直線的斜率為:彳2-0==-2;
當(dāng)直線不過(guò)原點(diǎn)時(shí),設(shè)直線的方程為二+[=1(a工0),
aa
-12
則」+*=1,即0=1,
aa
則直線的方程為x+y=l,斜率為T(mén).
故答案為:-2或-1.
13.50
【分析】將問(wèn)題分為甲、乙每屋住4人、2人或3人、3人兩類(lèi),進(jìn)而結(jié)合排列組合知識(shí)進(jìn)
行分配即可求得答案.
【詳解】由題意知將6名學(xué)生分配到甲、乙兩個(gè)宿舍中,每個(gè)宿舍至少安排2名學(xué)生,
包括甲、乙每屋住4人、2人或3人、3人,
當(dāng)甲和乙兩個(gè)屋子住4人、2人,共有C:C:A;=30種,
r3.r3
當(dāng)甲和乙兩個(gè)屋子住3人、3人,共有一種,
A2
根據(jù)分類(lèi)計(jì)數(shù)原理得到共有30+20=50(種).
故答案為:50
14-1
【解析】推導(dǎo)出數(shù)列{山%}、{In,}為等差數(shù)列,由此可得出黑=箸,即可得解.
答案第6頁(yè),共12頁(yè)
【詳解】設(shè)等比數(shù)列{%}的公比為4(4>0),則Ina用-lna“=ln4包=lnq(常數(shù)),
an
所以,數(shù)歹U{In%}為等差數(shù)列,同理可知,數(shù)歹U{In2}也為等差數(shù)列,
H4I1/\15(111^+In?5)
因?yàn)镮n月=In(Qi2%%%)=In%+In出+In%+In%+In%=---------J5Ina3,
,ln/51n&InA5x5-79
同理可得In2=51n4,因此,=
In6351nb3In22x55
Q
故答案為:
【點(diǎn)睛】結(jié)論點(diǎn)睛:已知等差數(shù)列{。"}、抄小的前〃項(xiàng)和分別為乞、T?,則壯=2.
,2〃一1
15.(1)v=-2x+2;(2)6-31n3.
【分析】(1)先求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義求切線方程;(2)首先利用導(dǎo)數(shù)判斷
函數(shù)的單調(diào)性,根據(jù)單調(diào)性求函數(shù)的最大值和最小值,端點(diǎn)時(shí)可能的最大值,再通過(guò)做差比
較大小,求最大值.
2
【詳解】(1)?.-/(%)=x-x-31nx,...r(x)=2x-l-3=2x'"3(x>d),
所以,函數(shù)y=/(x)的圖象在點(diǎn)(1,7(1))處的切線的斜率為后=/'。)=-2,
??-/(1)=0,所以,函數(shù)>=/(x)的圖象在點(diǎn)(1J。))處的切線方程為了=-2(尤-1),
即y=—2x+2;
(2),/3=2/口-3=卜+1)伽一3),xFl3
xxl_2_
當(dāng)時(shí),r(x)<0.當(dāng)xe1|,3)時(shí),/(x)>0.
所以,“41nl=/0=>31n|,
因?yàn)?[)=T+31n2,/⑶=6-31n3,
所以,/(3)-/^=6^-31n6>(q-31n(l>C,則
所以,函數(shù)N=/(無(wú))在;,3上的最大值為6-31n3.
【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的最值與導(dǎo)數(shù),在處理函數(shù)的最值時(shí),要充分
利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并將極值與端點(diǎn)函數(shù)值作大小比較得出結(jié)論,考查計(jì)算能力與
分析問(wèn)題的能力,屬于中等題.
16.(1)證明見(jiàn)解析
答案第7頁(yè),共12頁(yè)
【分析】(1)取P3中點(diǎn)M,連接/W,EM,通過(guò)證明四邊形4DE1M為平行四邊形,即可
證明結(jié)論;
(2)由直線尸尸與平面尸/8所成的角為60。,可得GEPG,/G,8G,/8,建立以G為原點(diǎn)的
空間直角坐標(biāo)系,利用向量方法可得答案.
【詳解】(1)取P8中點(diǎn)W,連接ZW,EM,
???£為PC的中點(diǎn),:.ME//BC,ME=-BC,
2
又?.?AD〃BC,AD=-BC,:.MEHAD,ME=AD,
2
四邊形4DEM為平行四邊形,.1DE〃/M,
???。石仁平面尸四瓦4Mu平面PA8,
DE//平面PAB;
(2)平面上43_L平面48CD,平面尸4Bc平面4BCD=48,2Cu平面4BCD,
BC1AB,:.BC1平面PAB,
取NB中點(diǎn)G,連接FG,則尸6//a7,,八7,平面力2,
ZGPF=60°,GF=1(^Z)+J8C)=3,
3
...tan60°=。,...尸G=豆,又PA=PB=2,;.AG=GB="-3=1,/5=2,
PG
叫n-PC=x+4y-也z=0
x取y=i,則%=(T,1,石),
niCD=-2x-2y=0
平面尸4s的一個(gè)法向量可取Z=(o,l,o),
答案第8頁(yè),共12頁(yè)
設(shè)平面PAB與平面PCD所成銳二面角為0,
1
/.COS0=
所以平面PAB與平面PCD所成銳二面角的余弦值—
5
17.(i)-p-,,卜4;
(2)直線過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為
【分析】(1)設(shè)直線4:y=K(x+l),與雙曲線聯(lián)立,將交點(diǎn)個(gè)數(shù)問(wèn)題轉(zhuǎn)換成方程解的個(gè)數(shù)
問(wèn)題;
(2)將直線4:y=區(qū)+"?與雙曲線聯(lián)立,韋達(dá)定理寫(xiě)出根與系數(shù)的關(guān)系,又以NB為直徑的
圓過(guò)雙曲線的左頂點(diǎn)C(-2,0),所以就.前=0,代入求解,得到左與加的關(guān)系即可得出結(jié)
論.
【詳解】(1)由題意得直線4的斜率必存在,設(shè)4:y=K(x+l),
y=/卜+1)
聯(lián)立,小,,得(1一4懺卜2—8奸x—4奸一4=0
------y2=1
14
若1-4將=0,即勺=±1時(shí),滿(mǎn)足題意,
若1—4k;片0,即尢W土g時(shí),
令A(yù)=(-8燈)2—4(1一4戶(hù))(一4公-4)=0,解之得用=土,,
綜上,的斜率為-g,一^~,;
2323
y=kx+m
(2)設(shè)卜(國(guó),%),5(%2,%),由<%2/)得(1—4左2)12_8加點(diǎn)—4(加2+1)=0,
丁
。-4左2。0
人」A=64加2左2+16(1—4左2)(冽2+])〉o
Smk-4(m2+1
*+Z=匚/'丁F
m2-4k之
yy=+m)(kx+加)=A2xx+%+ni
x22Y2~l-4k2
答案第9頁(yè),共12頁(yè)
???以為直徑的圓過(guò)雙曲線的左頂點(diǎn)。(-2,0),?,?就.元=0,
-
因?yàn)?C=(—2—X],—必),8C=(2-x2,-y2),
.加2-4后2-4(m+1)I6mk
(再+%An
y1y2+xxx2+22)+4=0,------------丁+--——1+--------+4=0
1一4左21-4A-21一4/
3m2—16mk+20k2=0,解得加=2左或加=不左.
當(dāng)"7=2左時(shí),直線的方程為了=Mx+2),直線過(guò)定點(diǎn)(-2,0),與已知矛盾;
當(dāng)加=¥左時(shí),直線的方程為y=左卜+?],直線過(guò)定點(diǎn),¥,0;經(jīng)檢驗(yàn)符合題意.
直線過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為
18.(1)an=2n;(2)20+3);(3)(21):+3+.
【分析】(1)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+1)(n£N*),nN2時(shí),an=Sn-Sn-i.n=l
時(shí),ai=Si=2,即可得出;(2)數(shù)列低}滿(mǎn)足:a『冬+"+£+???+',可得叱2
LI1
時(shí),an-an-i=-^—=2.n=l時(shí),&=ai=2,可得bi;(3)Cn=4^="112Ll_l=n?3+n,令
3〃+1444
數(shù)列{n?3n}的前n項(xiàng)和為An,利用錯(cuò)位相減法即可得出An.進(jìn)而得出數(shù)列{.}的前n項(xiàng)和
Tn.
【詳解】(1):數(shù)列{aQ的前n項(xiàng)和為Sn,且Sn=n(n+1)(n£N*),
n>2時(shí),an=Sn-Sn」=n(n+1)-n(n-1)=2n.
n=l時(shí),ai=Si=2,對(duì)于上式也成立.
.*.an=2n.
b1b9bobnbn
(2)數(shù)列{bn}滿(mǎn)足:an=——+—z----H—------H..+---------,,口之?時(shí),an-an-i=---------=2.
3+13^+13J+13n+l3n+l
Abn=2(3-1).
bi
n=l時(shí),----ai=2,可得bi=8,對(duì)于上式也成立.
4
???bn=2(3n+l).
⑶C-?2nx2(3』)』.3,
44
答案第10頁(yè),共12頁(yè)
1123n
令數(shù)列{m3}的前n項(xiàng)和為An,則An=3+2x3+3x3+...+n?3,
/.3An=32+2x33+...+(n-1)?3n+n?3n+1,
2nn+13n+1
-2An=3+3+...+3-n?3=-n?3,
3-1
可得An=(2n-1A3n+、3.
4
數(shù)列{Cn}的前n項(xiàng)和!>&_]);3-1+3
【點(diǎn)睛】本題考查了數(shù)列遞推關(guān)系、錯(cuò)位相減法、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其求和
公式、方程思想,考查了推理能力與計(jì)算能力,屬于中檔題.數(shù)列求和常用法有:錯(cuò)位相減,
裂項(xiàng)求和,分組求和等.
19.(l)/(x)=l+x+x2+x3
(2)0.48
⑶證明見(jiàn)解析
【分析】(1)分別求解/(、)的一階,二階,三階導(dǎo)數(shù),代入公式可得答案;
(2)寫(xiě)出sinx的泰勒公式,代入g可得答案;
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)安全數(shù)據(jù)加密協(xié)議
- 教師個(gè)人師德師風(fēng)自查自糾整改報(bào)告
- 2026年保密觀知識(shí)競(jìng)賽試題及答案(考試直接用)
- 2026年投資組合資產(chǎn)配置協(xié)議
- 電子商務(wù)平臺(tái)數(shù)據(jù)分析合同
- 區(qū)塊鏈奢侈品溯源協(xié)議
- 施工完成后驗(yàn)收協(xié)議
- 快遞合作協(xié)議框架
- 項(xiàng)目進(jìn)度執(zhí)行協(xié)議
- 車(chē)輛保險(xiǎn)續(xù)保合同
- 2025至2030中國(guó)X射線衍射儀(XRD)行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢(shì)及投資規(guī)劃深度研究報(bào)告
- 2026中國(guó)儲(chǔ)備糧管理集團(tuán)有限公司湖南分公司招聘(公共基礎(chǔ)知識(shí))綜合能力測(cè)試題附答案
- 急性應(yīng)激障礙護(hù)理
- 2025年高中信息技術(shù)會(huì)考真題及答案
- 帶式輸送機(jī)運(yùn)輸巷作為進(jìn)風(fēng)巷專(zhuān)項(xiàng)安全技術(shù)措施
- 中北大學(xué)2025年招聘編制外參編管理人員備考題庫(kù)(一)及一套完整答案詳解
- 掛靠車(chē)輛協(xié)議合同
- 2025滑雪場(chǎng)設(shè)備租賃行業(yè)市場(chǎng)供需分析場(chǎng)地設(shè)備投資運(yùn)營(yíng)管理模式研究
- 腰椎間盤(pán)突出患者術(shù)后護(hù)理課件
- 語(yǔ)文小學(xué)二年級(jí)上冊(cè)期末培優(yōu)試卷測(cè)試題(帶答案)
- 醫(yī)院護(hù)理培訓(xùn)課件:《高壓氧臨床的適應(yīng)癥》
評(píng)論
0/150
提交評(píng)論