版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,點A,B,C都在⊙O上,若∠C=30°,則∠AOB的度數(shù)為()A.30° B.60° C.150° D.120°2.函數(shù)在同一直角坐標系內(nèi)的圖象大致是()A. B. C. D.3.某個密碼鎖的密碼由三個數(shù)字組成,每個數(shù)字都是0-9這十個數(shù)字中的一個,只有當三個數(shù)字與所設定的密碼及順序完全相同,才能將鎖打開,如果僅忘記了所設密碼的最后那個數(shù)字,那么一次就能打開該密碼的概率是()A.110 B.19 C.14.關(guān)于x的方程有實數(shù)根,則k的取值范圍是()A. B.且 C. D.且5.下列命題中,正確的個數(shù)是()①直徑是弦,弦是直徑;②弦是圓上的兩點間的部分;③半圓是弧,但弧不一定是半圓;④直徑相等的兩個圓是等圓;⑤等于半徑兩倍的線段是直徑.A.2個 B.3個 C.4個 D.5個6.已知,則下列各式中正確的是()A. B. C. D.7.袋中裝有5個白球,3個黑球,除顏色外均相同,從中一次任摸出一個球,則摸到黑球的概率是()A. B. C. D.8.如圖是由6個大小相同的小正方體疊成的幾何體,則它的主視圖是()A. B.C. D.9.如圖,△ABC中,AB=25,BC=7,CA=1.則sinA的值為()A. B. C. D.10.如圖是一棵小樹一天內(nèi)在太陽下不同時刻的照片,將它們按時間先后順序進行排列正確的是()A.③—④—①—② B.②—①—④—③ C.④—①—②—③ D.④—①—③—②11.一塊△ABC空地栽種花草,∠A=150°,AB=20m,AC=30m,則這塊空地可栽種花草的面積為()m2A.450 B.300 C.225 D.15012.如右圖,在的正方形網(wǎng)格中,每個小正方形的邊長都是1,的頂點都在格點上,則的值為()A. B. C. D.二、填空題(每題4分,共24分)13.函數(shù)是關(guān)于反比例函數(shù),則它的圖象不經(jīng)過______的象限.14.如圖,將放在邊長為1的小正方形組成的網(wǎng)格中,若點A,O,B都在格點上,則___________________.15.在如圖所示的電路圖中,當隨機閉合開關(guān),,中的兩個時,能夠讓燈泡發(fā)光的概率為________.16.如圖,反比例函數(shù)的圖像過點,過點作軸于點,直線垂直線段于點,點關(guān)于直線的對稱點恰好在反比例函數(shù)的圖象上,則的值是__________.17.計算:﹣(﹣π)0+()﹣1=_____.18.已知:如圖,在中,于點,為的中點,若,,則的長是_______.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系xOy中,矩形ABCD的邊AB=4,BC=1.若不改變矩形ABCD的形狀和大小,當矩形頂點A在x軸的正半軸上左右移動時,矩形的另一個頂點D始終在y軸的正半軸上隨之上下移動.(1)當∠OAD=30°時,求點C的坐標;(2)設AD的中點為M,連接OM、MC,當四邊形OMCD的面積為時,求OA的長;(3)當點A移動到某一位置時,點C到點O的距離有最大值,請直接寫出最大值,并求此時cos∠OAD的值.20.(8分)已知拋物線y=x2+bx+c經(jīng)過原點,對稱軸為直線x=1,求該拋物線的解析式.21.(8分)某公司2019年10月份營業(yè)額為萬元,12月份營業(yè)額達到萬元,求該公司兩個月營業(yè)額的月平均增長率.22.(10分)有1張看上去無差別的卡片,上面分別寫著1、2、1.隨機抽取1張后,放回并混在一起,再隨機抽取1張.(I)請你用畫樹狀圖法(或列表法)列出兩次抽取卡片出現(xiàn)的所有可能結(jié)果;(Ⅱ)求兩次抽取的卡片上數(shù)字之和為偶數(shù)的概率.23.(10分)在△ABC中,AB=AC,∠BAC=120°,以CA為邊在∠ACB的另一側(cè)作∠ACM=∠ACB,點D為射線BC上任意一點,在射線CM上截取CE=BD,連接AD、DE、AE.(1)如圖1,當點D落在線段BC的延長線上時,求∠ADE的度數(shù);(2)如圖2,當點D落在線段BC(不含邊界)上時,AC與DE交于點F,試問∠ADE的度數(shù)是否發(fā)生變化?如果不變化,請給出理由;如果變化了,請求出∠ADE的度數(shù);(3)在(2)的條件下,若AB=6,求CF的最大值.24.(10分)如圖1,拋物線平移后過點A(8,,0)和原點,頂點為B,對稱軸與軸相交于點C,與原拋物線相交于點D.(1)求平移后拋物線的解析式并直接寫出陰影部分的面積;(2)如圖2,直線AB與軸相交于點P,點M為線段OA上一動點,為直角,邊MN與AP相交于點N,設,試探求:①為何值時為等腰三角形;②為何值時線段PN的長度最小,最小長度是多少.25.(12分)(1)(問題發(fā)現(xiàn))如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關(guān)系為(2)(拓展研究)在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請僅就圖2的情形給出證明;(3)(問題發(fā)現(xiàn))當正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時候,直接寫出線段AF的長.26.如圖,點B、D、E在一條直線上,BE交AC于點F,,且∠BAD=∠CAE.(1)求證:△ABC∽△ADE;(2)求證:△AEF∽△BFC.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)圓周角定理結(jié)合∠C=30°,即可得出∠AOB的度數(shù).【詳解】∵∠C=30°,∴∠AOB=2∠C=60°.故選:B.本題考查了圓周角定理,解題的關(guān)鍵是利用同弧所對的圓心角是圓周角的2倍解決題.本題屬于基礎題,難度不大,解決該題型題目時,熟練運用圓周角定理解決問題是關(guān)鍵.2、C【分析】根據(jù)a、b的符號,針對二次函數(shù)、一次函數(shù)的圖象位置,開口方向,分類討論,逐一排除.【詳解】當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象經(jīng)過一、三或一、二、三或一、三、四象限,故A、D不正確;由B、C中二次函數(shù)的圖象可知,對稱軸x=->0,且a>0,則b<0,但B中,一次函數(shù)a>0,b>0,排除B.故選C.3、A【解析】試題分析:根據(jù)題意可知總共有10種等可能的結(jié)果,一次就能打開該密碼的結(jié)果只有1種,所以P(一次就能打該密碼)=,故答案選A.考點:概率.4、C【分析】關(guān)于x的方程可以是一元一次方程,也可以是一元二次方程;當方程為一元一次方程時,k=1;是一元二次方程時,必須滿足下列條件:(1)二次項系數(shù)不為零;(2)在有實數(shù)根下必須滿足△=b2-4ac≥1.【詳解】當k=1時,方程為3x-1=1,有實數(shù)根,當k≠1時,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.綜上可知,當k≥-時,方程有實數(shù)根;故選C.本題考查了方程有實數(shù)根的含義,一元二次方程根的判別式的應用.切記不要忽略一元二次方程二次項系數(shù)不為零這一隱含條件.注意到分兩種情況討論是解題的關(guān)鍵.5、A【分析】根據(jù)弦、等圓、弧的相關(guān)概念直接進行排除選項.【詳解】①直徑是弦,弦是不一定是直徑,故錯誤;②弦是圓上兩點之間的線段,故錯誤;③半圓是弧,但弧不一定是半圓,故正確;④直徑相等的兩個圓是等圓,故正確;⑤等于半徑兩倍的弦是直徑,故錯誤;所以正確的個數(shù)為2個;故選A.本題主要考查圓的相關(guān)概念,正確理解圓的相關(guān)概念是解題的關(guān)鍵.6、A【分析】根據(jù)比例的性質(zhì),逐項分析即可.【詳解】A.∵,∴,∴,正確;B.∵,∴,∴,故不正確;C.∵,∴,故不正確;D.∵,∴,∴,故不正確;故選A.本題考查了比例的性質(zhì),熟練掌握比例的性質(zhì)是解答本題的關(guān)鍵,如果,那么或或.7、B【解析】先求出球的總個數(shù),根據(jù)概率公式解答即可.【詳解】因為白球5個,黑球3個一共是8個球,所以從中隨機摸出1個球,則摸出黑球的概率是.故選B.本題考查了概率公式,明確概率的意義是解答問題的關(guān)鍵,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.8、C【分析】找到從正面看所得到的圖形即可.【詳解】解:它的主視圖是:故選:C.本題考查了三視圖的知識,掌握主視圖是解題的關(guān)鍵.9、A【分析】根據(jù)勾股定理逆定理推出∠C=90°,再根據(jù)進行計算即可;【詳解】解:∵AB=25,BC=7,CA=1,又∵,∴,∴△ABC是直角三角形,∠C=90°,∴=;故選A.本題主要考查了銳角三角函數(shù)的定義,勾股定理逆定理,掌握銳角三角函數(shù)的定義,勾股定理逆定理是解題的關(guān)鍵.10、B【分析】根據(jù)一天中影子的長短和方向判斷即可.【詳解】眾所周知,影子方向的變化是上午時朝向西邊,中午時朝向北邊,下午時朝向東邊;影子長短的變化是由長變短再變長,結(jié)合方向和長短的變化即可得出答案故選B本題主要考查影子的方向和長短變化,掌握影子的方向和長短的變化規(guī)律是解題的關(guān)鍵.11、D【分析】過點B作BE⊥AC,根據(jù)含30度角的直角三角形性質(zhì)可求得BE,再根據(jù)三角形的面積公式求出答案.【詳解】過點B作BE⊥AC,交CA延長線于E,則∠E=90°,
∵,
∴,
∵在中,,,
∴,
∴這塊空地可栽種花草的面積為.故選:D本題考查了含30度角的直角三角形性質(zhì)和三角形的面積公式,是基礎知識比較簡單.12、A【分析】過作于,首先根據(jù)勾股定理求出,然后在中即可求出的值.【詳解】如圖,過作于,則,=1..故選:A.本題考查了勾股定理的運用以及銳角三角函數(shù),正確作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、第一、三象限【解析】試題解析:函數(shù)是關(guān)于的反比例函數(shù),解得:比例系數(shù)它的圖象在第二、四象限,不經(jīng)過第一、三象限.故答案為第一、三象限.14、2【分析】利用網(wǎng)格特征,將∠AOB放到Rt△AOD中,根據(jù)正切函數(shù)的定理即可求出tan∠AOB的值.【詳解】如圖,將∠AOB放到Rt△AOD中,∵AD=2,OD=1∴tan∠AOB=故答案為:2.本題考查在網(wǎng)格圖中求正切值,利用網(wǎng)格的特征將將∠AOB放到直角三角形中是解題的關(guān)鍵.15、【分析】分析電路圖知:要讓燈泡發(fā)光,必須閉合,同時,中任意一個關(guān)閉時,滿足條件,從而求算概率.【詳解】分析電路圖知:要讓燈泡發(fā)光,必須閉合,同時,中任意一個關(guān)閉時,滿足:一共有:,,、,、,三種情況,滿足條件的有,、,兩種,∴能夠讓燈泡發(fā)光的概率為:故答案為:.本題考查概率運算,分析出所有可能的結(jié)果,尋找出滿足條件的情況是解題關(guān)鍵.16、【分析】設直線l與y軸交于點M,點關(guān)于直線的對稱點,連接MB′,根據(jù)一次函數(shù)解析式確定∠PMO=45°及M點坐標,然后根據(jù)A點坐標分析B點坐標,MB的長度,利用對稱性分析B′的坐標,利用待定系數(shù)法求反比例函數(shù)解析式,然后將B′坐標代入解析式,從而求解.【詳解】解:直線l與y軸交于點M,點關(guān)于直線的對稱點,連接MB′由直線中k=1可知直線l與x軸的夾角為45°,∴∠PMO=45°,M(0,b)由,過點作軸于點∴B(0,2),MB=b-2∴B′(2-b,b)把點代入中解得:k=-4∴∵恰好在反比例函數(shù)的圖象上把B′(2-b,b)代入中解得:(負值舍去)∴故答案為:本題考查了待定系數(shù)法求反比例函數(shù)、正比例函數(shù)的解析式,軸對稱的性質(zhì),函數(shù)圖象上點的坐標特征,用含b的代數(shù)式表示B′點坐標是解題的關(guān)鍵.17、1【分析】首先計算乘方、開方,然后從左向右依次計算,求出算式的值是多少即可.【詳解】解:﹣(﹣π)0+()﹣1=2﹣1+2=1.故答案為:1.此題考查的是實數(shù)的混合運算,掌握立方根的定義、零指數(shù)冪的性質(zhì)和負指數(shù)冪的性質(zhì)是解決此題的關(guān)鍵.18、【分析】先根據(jù)直角三角形的性質(zhì)求出AC的長,再根據(jù)勾股定理即可得出結(jié)論.【詳解】解:∵△ABC中,AD⊥BC,∴∠ADC=90°.∵E是AC的中點,DE=5,CD=8,∴AC=2DE=1.∴AD2=AC2?CD2=12?82=2.∴AD=3.故答案為:3.本題主要考查了直角三角形的性質(zhì),熟知在直角三角形中,斜邊上的中線等于斜邊的一半是解答此題的關(guān)鍵.三、解答題(共78分)19、(1)點C的坐標為(2,3+2);(2)OA=3;(3)OC的最大值為8,cos∠OAD=.【分析】(1)作CE⊥y軸,先證∠CDE=∠OAD=30°得CE=CD=2,DE=,再由∠OAD=30°知OD=AD=3,從而得出點C坐標;(2)先求出S△DCM=1,結(jié)合S四邊形OMCD=知S△ODM=,S△OAD=9,設OA=x、OD=y(tǒng),據(jù)此知x2+y2=31,xy=9,得出x2+y2=2xy,即x=y(tǒng),代入x2+y2=31求得x的值,從而得出答案;(3)由M為AD的中點,知OM=3,CM=5,由OC≤OM+CM=8知當O、M、C三點在同一直線時,OC有最大值8,連接OC,則此時OC與AD的交點為M,ON⊥AD,證△CMD∽△OMN得,據(jù)此求得MN=,ON=,AN=AM﹣MN=,再由OA=及cos∠OAD=可得答案.【詳解】(1)如圖1,過點C作CE⊥y軸于點E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴點C的坐標為(2,3+2);(2)∵M為AD的中點,∴DM=3,S△DCM=1,又S四邊形OMCD=,∴S△ODM=,∴S△OAD=9,設OA=x、OD=y(tǒng),則x2+y2=31,xy=9,∴x2+y2=2xy,即x=y(tǒng),將x=y(tǒng)代入x2+y2=31得x2=18,解得x=3(負值舍去),∴OA=3;(3)OC的最大值為8,如圖2,M為AD的中點,∴OM=3,CM==5,∴OC≤OM+CM=8,當O、M、C三點在同一直線時,OC有最大值8,連接OC,則此時OC與AD的交點為M,過點O作ON⊥AD,垂足為N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴,即,解得MN=,ON=,∴AN=AM﹣MN=,在Rt△OAN中,OA=,∴cos∠OAD=.本題是四邊形的綜合問題,解題的關(guān)鍵是掌握矩形的性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)等知識點.20、y=x2﹣2x.【分析】根據(jù)拋物線經(jīng)過原點可得c=0,根據(jù)對稱軸公式求得b,即可求得其解析式.【詳解】∵拋物線y=x2+bx+c經(jīng)過原點,∴c=0,又∵拋物線y=x2+bx+c的對稱軸為x=1,∴﹣=1,解得b=﹣2∴拋物線的解析式為y=x2﹣2x.本題考查了待定系數(shù)法求二次函數(shù)的解析式,熟練掌握對稱軸公式是解題的關(guān)鍵.21、【分析】設該公司兩個月營業(yè)額的月平均增長率為,根據(jù)題目中的等量關(guān)系列出方程即可求解.【詳解】設該公司兩個月營業(yè)額的月平均增長率為,依題意,得:,解得:(不合題意,舍去).答:該公司兩個月營業(yè)額的月平均增長率為.本題考查的是增長率問題,比較典型,屬于基礎題型,關(guān)鍵是掌握增長率問題數(shù)量關(guān)系及其一般做法.22、(I)9;(Ⅱ).【解析】(Ⅰ)直接用樹狀圖或列表法等方法列出各種可能出現(xiàn)的結(jié)果;(Ⅱ)由(Ⅰ)可知所有9種等可能的結(jié)果數(shù),再找出兩次抽到的卡片上的數(shù)字之和為偶數(shù)的有5種.然后根據(jù)概率公式求解即可.【詳解】解:(Ⅰ)畫樹狀圖得:共有9種等可能的結(jié)果數(shù);(Ⅱ)由(Ⅰ)可知:共有9種等可能的結(jié)果數(shù),兩次抽取的卡片上數(shù)字之和為偶數(shù)的有5種,所以兩次抽到的卡片上的數(shù)字之和為偶數(shù)的概率為:.本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.23、(1)∠ADE=30°;(2)∠ADE=30°,理由見解析;(3)【分析】(1)利用SAS定理證明△ABD≌△ACE,根據(jù)全等三角形的性質(zhì)得到AD=AE,∠CAE=∠BAD,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算即可證明;(2)同(1)的證明方法相同;(3)證明△ADF∽△ACD,根據(jù)相似三角形的性質(zhì)得到,求出AD的最小值,得到AF的最小值,求出CF的最大值.【詳解】解:(1)∠ADE=30°.理由如下:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=120°,∴∠ADE=30°;(2)(1)中的結(jié)論成立,證明:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°,∵AD=AE,∴∠ADE=∠AED=30°;(3)∵AB=AC,AB=6,∴AC=6,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD,∴,∴AD2=AF?AC,∴AD2=6AF,∴AF=,∴當AD最短時,AF最短、CF最長,易得當AD⊥BC時,AF最短、CF最長,此時AD=AB=3,∴AF最短===,∴CF最長=AC-AF最短=6-=.本題屬于三角形綜合題,考查了等腰三角形的性質(zhì),全等三角形的判定和性質(zhì)以及相似三角形的判定與性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形、相似三角形解決問題,屬于中考??碱}型.24、(1)平移后拋物線的解析式,=12;(2)①,②當=3時,PN取最小值為.【分析】(1)設平移后拋物線的解析式y(tǒng)=x2+bx,將點A(8,0)代入,根據(jù)待定系數(shù)法即可求得平移后拋物線的解析式,再根據(jù)割補法由三角形面積公式即可求解;(2)作NQ垂直于x軸于點Q,①分當MN=AN時,當AM=AN時,當MN=MA時,三種情況討論可得△MAN為等腰三角形時t的值;②由MN所在直線方程為y=,與直線AB的解析式y(tǒng)=﹣x+6聯(lián)立,得xN的最小值為6,此時t=3,PN取最小值為.【詳解】(1)設平移后拋物線的解析式,將點A(8,,0)代入,得=,所以頂點B(4,3),所以S陰影=OC?CB=12;(2)設直線AB解析式為y=mx+n,將A(8,0)、B(4,3)分別代入得,解得:,所以直線AB的解析式為,作NQ垂直于x軸于點Q,①當MN=AN時,N點的橫坐標為,縱坐標為,由三角形NQM和三角形MOP相似可知,得,解得(舍去).當AM=AN時,AN=,由三角形ANQ和三角形APO相似可知,,MQ=,由三角形NQM和三角形MOP相似可知得:,解得:t=12(舍去);當MN=MA時,故是鈍角,顯然不成立,故;②由MN所在直線方程為y=,與直線AB的解析式y(tǒng)=﹣x+6聯(lián)立,得點N的橫坐標為XN=,即t2﹣xNt+36﹣xN=0,由判別式△=x2N﹣4(36﹣)≥0,得xN≥6或xN≤﹣14,又因為0<xN<8,所以xN的最小值為6,此時t=3,當t=3時,N的坐標為(6,),此時PN取最小值為.本題考查了二次函數(shù)綜合題,涉及的知識點有:待定系數(shù)法求拋物線的解析式,平移的性質(zhì),割補法,三角形面積,分類思想,相似三角形的性質(zhì),勾股定理,根的判別式,綜合性較強,有一定的難度,熟練掌握相關(guān)知識是解題的關(guān)鍵.25、(1)BE=AF;(2)無變化;(3)﹣1或+1.【解析】(1)先利用等腰直角三角形的性質(zhì)得出AD=,再得出BE=AB=2,即可得出結(jié)論;(2)先利用三角函數(shù)得出,同理得出,夾角相等即可得出△ACF∽△BCE,進而得出結(jié)論;(3)分兩種情況計算,當點E在線段BF上時,如圖2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=﹣,借助(2)得出的結(jié)論,當點E在線段BF的延長線上,同前一種情況一樣即可得出結(jié)論.【詳解】解:(1)在Rt△ABC中,AB=AC=2,根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年工業(yè)碳足跡追溯與認證項目商業(yè)計劃書
- 2026年美容儀 APP 控制終端項目營銷方案
- 2025年江蘇省鹽城市中考英語真題卷含答案解析
- 2025年涂裝安全考試題及答案
- 2025年計算機程序設計員(三級)職業(yè)鑒定考試題庫及答案
- 屋面滲漏處理方案
- 跌倒墜床應急預案演練
- 預應力管樁施工質(zhì)量交底
- 小學三年級英語下冊練習題及答案
- 公路工程糾紛專用!建設工程施工合同糾紛要素式起訴狀模板
- 2025年安全生產(chǎn)事故年度綜合分析報告
- 2026年1月福建廈門市集美區(qū)后溪鎮(zhèn)衛(wèi)生院補充編外人員招聘16人考試參考試題及答案解析
- 2026年腹腔鏡縫合技術(shù)培訓
- 2026年黑龍江省七臺河市高職單招職業(yè)適應性測試試題題庫(答案+解析)
- 2026年廣西貴港市華盛集團新橋農(nóng)工商有限責任公司招聘備考題庫及一套答案詳解
- 地鐵安檢施工方案(3篇)
- 小學生寒假心理健康安全教育
- 汽機專業(yè)安全培訓課件
- 2026高考藍皮書高考關(guān)鍵能力培養(yǎng)與應用1.批判性與創(chuàng)造性思維能力的基礎知識
- 多學科團隊(MDT)中的醫(yī)患溝通協(xié)同策略
- 期末復習知識點清單新教材統(tǒng)編版道德與法治七年級上冊
評論
0/150
提交評論