2024年湖北省豐溪鎮(zhèn)中學數(shù)學九年級第一學期期末檢測試題含解析_第1頁
2024年湖北省豐溪鎮(zhèn)中學數(shù)學九年級第一學期期末檢測試題含解析_第2頁
2024年湖北省豐溪鎮(zhèn)中學數(shù)學九年級第一學期期末檢測試題含解析_第3頁
2024年湖北省豐溪鎮(zhèn)中學數(shù)學九年級第一學期期末檢測試題含解析_第4頁
2024年湖北省豐溪鎮(zhèn)中學數(shù)學九年級第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,等邊的邊長為是邊上的中線,點是邊上的中點.如果點是上的動點,那么的最小值為()A. B. C. D.2.如圖,方格紙中4個小正方形的邊長均為2,則圖中陰影部分三個小扇形的面積和為()A. B. C. D.3.下列方程中沒有實數(shù)根的是()A. B.C. D.4.如圖,在Rt△ABC中,∠ACB=90°,若,BC=2,則sin∠A的值為()A. B. C. D.5.分別寫有數(shù)字﹣4,0,﹣1,6,9,2的六張卡片,除數(shù)字外其它均相同,從中任抽一張,則抽到偶數(shù)的概率是()A. B. C. D.6.下列事件中,屬于不確定事件的有()①太陽從西邊升起;②任意摸一張體育彩票會中獎;③擲一枚硬幣,有國徽的一面朝下;④小明長大后成為一名宇航員.A.①②③B.①③④C.②③④D.①②④7.下列事件是必然事件的是()A.打開電視機,正在播放動畫片 B.經(jīng)過有交通信號燈的路口,遇到紅燈C.過三點畫一個圓 D.任意畫一個三角形,其內(nèi)角和是8.某車間20名工人日加工零件數(shù)如表所示:日加工零件數(shù)45678人數(shù)26543這些工人日加工零件數(shù)的眾數(shù)、中位數(shù)、平均數(shù)分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、69.如圖,⊙O是△ABC的外接圓,∠B=60°,OP⊥AC于點P,OP=2,則⊙O的半徑為().A.4 B.6 C.8 D.1210.二次函數(shù)的圖象是一條拋物線,下列說法中正確的是()A.拋物線開口向下 B.拋物線經(jīng)過點C.拋物線的對稱軸是直線 D.拋物線與軸有兩個交點二、填空題(每小題3分,共24分)11.如圖,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分別為AC、AD上兩動點,連接CF、EF,則CF+EF的最小值為_____.12.如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當直線l與x軸所成銳角為30°,且r1=1時,r2018=________.13.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得的線段CD的長.14.如圖,分別以正三角形的3個頂點為圓心,邊長為半徑畫弧,三段弧圍成的圖形稱為萊洛三角形.若正三角形邊長為6cm,則該萊洛三角形的周長為_____cm.15.如圖,拋物線與軸交于兩點,是以點為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是________.16.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,CE是AB邊上的中線,若AD=3,CE=5,則CD等于_____.17.已知是方程的根,則代數(shù)式的值為__________.18.如圖,AB是⊙O的直徑,BC是⊙O的弦.若∠OBC=60°,則∠BAC=__.三、解答題(共66分)19.(10分)如圖,AB和DE是直立在地面上的兩根立柱.AB=6m,某一時刻AB在陽光下的投影BC=4m(1)請你在圖中畫出此時DE在陽光下的投影.(2)在測量AB的投影時,同時測量出DE在陽光下的投影長為9m,請你計算DE的長.20.(6分)解方程(1)(用配方法)(2)(3)計算:21.(6分)對于平面直角坐標系中的圖形M,N,給出如下定義:如果點P為圖形M上任意一點,點Q為圖形N上任意一點,那么稱線段PQ長度的最小值為圖形M,N的“近距離”,記作d(M,N).若圖形M,N的“近距離”小于或等于1,則稱圖形M,N互為“可及圖形”.(1)當⊙O的半徑為2時,①如果點A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)=________;②如果直線與⊙O互為“可及圖形”,求b的取值范圍;(2)⊙G的圓心G在軸上,半徑為1,直線與x軸交于點C,與y軸交于點D,如果⊙G和∠CDO互為“可及圖形”,直接寫出圓心G的橫坐標m的取值范圍.22.(8分)如圖,點D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點.點O是△ABC所在平面上的動點,連接OB,OC,點G,F(xiàn)分別是OB,OC的中點,順次連接點D,G,F(xiàn),E.(1)如圖,當點O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;(2)若四邊形DGFE是菱形,則OA與BC應滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由)23.(8分)如圖,已知是的一條弦,請用尺規(guī)作圖法找出的中點.(保留作圖痕跡,不寫作法)24.(8分)如圖,已知二次函數(shù)的圖像過點A(-4,3),B(4,4).(1)求拋物線二次函數(shù)的解析式.(2)求一次函數(shù)直線AB的解析式.(3)看圖直接寫出一次函數(shù)直線AB的函數(shù)值大于二次函數(shù)的函數(shù)值的x的取值范圍.(4)求證:△ACB是直角三角形.25.(10分)(問題呈現(xiàn))阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,點M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=DB+BA.下面是運用“截長法”證明CD=DB+BA的部分證明過程.證明:如圖2,在CD上截取CG=AB,連接MA、MB、MC和MG.∵M是的中點,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根據(jù)證明過程,分別寫出下列步驟的理由:①,②,③;(理解運用)如圖1,AB、BC是⊙O的兩條弦,AB=4,BC=6,點M是的中點,MD⊥BC于點D,則BD=;(變式探究)如圖3,若點M是的中點,(問題呈現(xiàn))中的其他條件不變,判斷CD、DB、BA之間存在怎樣的數(shù)量關(guān)系?并加以證明.(實踐應用)根據(jù)你對阿基米德折弦定理的理解完成下列問題:如圖4,BC是⊙O的直徑,點A圓上一定點,點D圓上一動點,且滿足∠DAC=45°,若AB=6,⊙O的半徑為5,求AD長.26.(10分)解方程:(1)2x2﹣7x+3=0(2)7x(5x+2)=6(5x+2)

參考答案一、選擇題(每小題3分,共30分)1、D【分析】要求EP+CP的最小值,需考慮通過作輔助線轉(zhuǎn)化EP,CP的值,從而找出其最小值求解【詳解】連接BE,與AD交于點G.∵△ABC是等邊三角形,AD是BC邊上的中線,∴AD⊥BC,∴AD是BC的垂直平分線,∴點C關(guān)于AD的對稱點為點B,∴BE就是EP+CP的最小值.∴G點就是所求點,即點G與點P重合,∵等邊△ABC的邊長為8,E為AC的中點,∴CE=4,BE⊥AC,在直角△BEC中,BE=,∴EP+CP的最小值為,故選D.此題考查軸對稱-最短路線問題,等邊三角形的對稱性、三線合一的性質(zhì)以及勾股定理的運用,熟練掌握,即可解題.2、D【分析】根據(jù)直角三角形的兩銳角互余求出∠1+∠2=90°,再根據(jù)正方形的對角線平分一組對角求出∠3=45°,然后根據(jù)扇形面積公式列式計算即可得解.【詳解】解:由圖可知,∠1+∠2=90°,∠3=45°,

∵正方形的邊長均為2,

∴陰影部分的面積=.

故選:D.本題考查了中心對稱,觀察圖形,根據(jù)正方形的性質(zhì)與直角三角形的性質(zhì)求出陰影部分的圓心角是解題的關(guān)鍵.3、D【分析】分別計算出判別式△=b2?4ac的值,然后根據(jù)判別式的意義分別判斷即可.【詳解】解:A、△==5>0,方程有兩個不相等的實數(shù)根;B、△=32?4×1×2=1>0,方程有兩個不相等的實數(shù)根;C、△=112?4×2019×(?20)=161641>0,方程有兩個不相等的實數(shù)根;D、△=12?4×1×2=?7<0,方程沒有實數(shù)根.故選:D.本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2?4ac的意義,當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.4、C【分析】先利用勾股定理求出AB的長,然后再求sin∠A的大?。驹斀狻拷猓骸咴赗t△ABC中,,BC=2∴AB=∴sin∠A=故選:C.本題考查銳角三角形的三角函數(shù)和勾股定理,需要注意求三角函數(shù)時,一定要是在直角三角形當中.5、D【分析】根據(jù)概率公式直接計算即可.【詳解】解:在這6張卡片中,偶數(shù)有4張,所以抽到偶數(shù)的概率是=,故選:D.本題主要考查了隨機事件的概率,隨機事件A的概率P(A)事件A可能出現(xiàn)的結(jié)果數(shù)所有可能出現(xiàn)的結(jié)果數(shù),靈活利用概率公式是解題的關(guān)鍵.6、C【解析】因為不確定事件即隨機事件是指在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,確定事件包括必然事件和不可能事件,所以①太陽從西邊升起,是不可能發(fā)生的事件,是確定事件,②任意摸一張體育彩票會中獎,是不確定事件,③擲一枚硬幣,有國徽的一面朝下,是不確定事件,④小明長大后成為一名宇航員,是不確定事件,故選C.點睛:本題考查確定事件和不確定事件的定義,解決本題的關(guān)鍵是要熟練掌握確定事件和不確定事件的定義.7、D【分析】必然事件是在一定條件下,必然會發(fā)生的事件.依據(jù)定義判斷即可.【詳解】A.打開電視機,可能正在播放新聞或其他節(jié)目,所以不是必然事件;B.經(jīng)過有交通信號燈的路口,遇到紅燈,也可能遇到綠燈,所以不是必然事件;C.過三點畫一個圓,如果這三點在一條直線上,就不能畫圓,所以不是必然事件;D.任意畫一個三角形,其內(nèi)角和是,是必然事件.故選:D本題考查的是必然事件,必然事件是一定發(fā)生的事件.8、D【詳解】5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是5;把這些數(shù)從小到大排列,中位數(shù)是第10,11個數(shù)的平均數(shù),則中位數(shù)是(6+6)÷2=6;平均數(shù)是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.9、A【解析】∵圓心角∠AOC與圓周角∠B所對的弧都為,且∠B=60°,∴∠AOC=2∠B=120°(在同圓或等圓中,同弧所對圓周角是圓心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等邊對等角和三角形內(nèi)角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定義).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所對的邊是斜邊的一半).∴⊙O的半徑4.故選A.10、D【分析】根據(jù)二次函數(shù)的性質(zhì)對A、C進行判斷;根據(jù)二次函數(shù)圖象上點的坐標特征對B進行判斷;利用方程2x2-1=0解的情況對D進行判斷.【詳解】A.

a=2,則拋物線y=2x2?1的開口向上,所以A選項錯誤;B.當x=1時,y=2×1?1=1,則拋物線不經(jīng)過點(1,-1),所以B選項錯誤;C.拋物線的對稱軸為直線x=0,所以C選項錯誤;D.當y=0時,2x2?1=0,此方程有兩個不相等的實數(shù)解,所以D選項正確.故選D.本題考查了拋物線與x軸的交點,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標特征,結(jié)合圖像是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】作BM⊥AC于M,交AD于F,根據(jù)三線合一定理求出BD的長和AD⊥BC,根據(jù)三角形面積公式求出BM,根據(jù)對稱性質(zhì)求出BF=CF,根據(jù)垂線段最短得出CF+EF≥BM,即可得出答案.【詳解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC邊上的中線,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C關(guān)于AD對稱,∴BF=CF,根據(jù)垂線段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=×BC×AD=×AC×BM,∴BM=,即CF+EF的最小值是,故答案為:.本題考查了軸對稱?最短路線問題,關(guān)鍵是畫出符合條件的圖形,題目具有一定的代表性,是一道比較好的題目.12、1【解析】分別作O1A⊥l,O2B⊥l,O3C⊥l,如圖,

∵半圓O1,半圓O2,…,半圓On與直線L相切,

∴O1A=r1,O2B=r2,O3C=r3,

∵∠AOO1=30°,

∴OO1=2O1A=2r1=2,

在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,

∴r2=3,

在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,

∴r3=9=32,

同理可得r4=27=33,

所以r2018=1.

故答案為1.點睛:找規(guī)律題需要記憶常見數(shù)列1,2,3,4……n1,3,5,7……2n-12,4,6,8……2n2,4,8,16,32……1,4,9,16,25……2,6,12,20……n(n+1)一般題目中的數(shù)列是利用常見數(shù)列變形而來,其中后一項比前一項多一個常數(shù),是等差數(shù)列,列舉找規(guī)律.后一項是前一項的固定倍數(shù),則是等比數(shù)列,列舉找規(guī)律.13、這個“果圓”被y軸截得的線段CD的長3+.【分析】連接AC,BC,有拋物線的解析式可求出A,B,C的坐標,進而求出AO,BO,DO的長,在直角三角形ACB中,利用射影定理可求出CO的長,進而可求出CD的長.【詳解】連接AC,BC,∵拋物線的解析式為y=(x-1)2-4,∴點D的坐標為(0,?3),∴OD的長為3,設(shè)y=0,則0=(x-1)2-4,解得:x=?1或3,∴A(?1,0),B(3,0)∴AO=1,BO=3,∵AB為半圓的直徑,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO?BO=3,∴CO=,∴CD=CO+OD=3+,故答案為3+.14、6π【分析】直接利用弧長公式計算即可.【詳解】利用弧長公式計算:該萊洛三角形的周長(cm)故答案為6π本題考查了弧長公式,熟練掌握弧長公式是解題關(guān)鍵.15、3.1【分析】連接BP,如圖,先解方程=0得A(?4,0),B(4,0),再判斷OQ為△ABP的中位線得到OQ=BP,利用點與圓的位置關(guān)系,BP過圓心C時,PB最大,如圖,點P運動到P′位置時,BP最大,然后計算出BP′即可得到線段OQ的最大值.【詳解】連接BP,如圖,當y=0時,=0,解得x1=4,x2=?4,則A(?4,0),B(4,0),∵Q是線段PA的中點,∴OQ為△ABP的中位線,∴OQ=BP,當BP最大時,OQ最大,而BP過圓心C時,PB最大,如圖,點P運動到P′位置時,BP最大,∵BC=∴BP′=1+2=7,∴線段OQ的最大值是3.1,故答案為:3.1.本題考查了點與圓的位置關(guān)系:點的位置可以確定該點到圓心距離與半徑的關(guān)系,反過來已知點到圓心距離與半徑的關(guān)系可以確定該點與圓的位置關(guān)系.也考查了三角形中位線.16、【分析】根據(jù)直角三角形的性質(zhì)得出AE=CE=1,進而得出DE=2,利用勾股定理解答即可.【詳解】解:∵在Rt△ABC中,∠ACB=90°,CE為AB邊上的中線,CE=1,∴AE=CE=1,∵AD=3,∴DE=2,∵CD為AB邊上的高,∴在Rt△CDE中,CD=,故答案為:.此題考查勾股定理的應用以及直角三角形的性質(zhì),關(guān)鍵是根據(jù)直角三角形的性質(zhì)得出AE=CE=1.17、1【分析】把代入已知方程,并求得,然后將其整體代入所求的代數(shù)式進行求值即可.【詳解】解:把代入,得,解得,所以.故答案是:1.本題考查一元二次方程的解以及代數(shù)式求值,注意解題時運用整體代入思想.18、30°【分析】根據(jù)AB是⊙O的直徑可得出∠ACB=90°,再根據(jù)三角形內(nèi)角和為180°以及∠OBC=60°,即可求出∠BAC的度數(shù).【詳解】∵AB是⊙O的直徑,

∴∠ACB=90°,

又∵∠OBC=60°,

∴∠BAC=180°-∠ACB-∠ABC=30°.

故答案為:30°.本題考查了圓周角定理以及角的計算,解題的關(guān)鍵是找出∠ACB=90°.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,找出直徑所對的圓周角為90°是關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2)13.5m.【分析】(1)直接利用平行投影的性質(zhì)得出答案;(2)利用同一時刻實際物體的影子與物體的高度比值相同進而得出答案.【詳解】解:(1)如圖所示:EF即為所求;(2)∵AB=6m,某一時刻AB在陽光下的投影BC=4m,DE在陽光下的投影長為9m,∴=,解得:DE=13.5m,答:DE的長為13.5m.此題主要考查相似三角形的判定與性質(zhì),解題法的關(guān)鍵是熟知平行線的性質(zhì).20、(1),;(2),;(3)【分析】(1)方程整理配方后,開方即可求出解;(2)把方程左邊進行因式分解,求方程的解;(3)根據(jù)二次根式、特殊角的三角函數(shù)值、0次冪、負整數(shù)指數(shù)冪的運算法則計算即可.【詳解】(1),方程整理得:,配方得:,即,開方得:,解得:,;(2),,即,∴或,解得:,;(3).本題主要考查了解一元二次方程-配方法、因式分解法以及實數(shù)的混合運算,特殊角的三角函數(shù)值,熟練掌握一元二次方程的各種解法以及熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.21、(1)①1,3;②;(2),.【分析】(1)①根據(jù)圖形M,N間的“近距離”的定義結(jié)合已知條件求解即可.②根據(jù)可及圖形的定義作出符合題意的圖形,結(jié)合圖形作答即可;(2)分兩種情況進行討論即可.【詳解】(1)①如圖:根據(jù)近距離的定義可知:d(A,⊙O)=AC=2-1=1.過點B作BE⊥x軸于點E,則OB==5∴d(B,⊙O)=OB-OD=5-2=3.故答案為1,3.②∵由題意可知直線與⊙O互為“可及圖形”,⊙O的半徑為2,∴.∴.∴.(2)①當⊙G與邊OD是可及圖形時,d(O,⊙G)=OG-1,∴即-1≤m-1≤1解得:.②當⊙G與邊CD是可及圖形時,如圖,過點G作GE⊥CD于E,d(E,⊙G)=EG-1,由近距離的定義可知d(E,⊙G)的最大值為1,∴此時EG=2,∵∠GCE=45°,∴GC=2.∵OC=5,∴OG=5-2.根據(jù)對稱性,OG的最大值為5+2.∴綜上所述,m的取值范圍為:或本題主要考查了圓的綜合知識,正確理解“近距離”和“可及圖形”的概念是解題的關(guān)鍵.22、(1)見詳解;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.理由見詳解【分析】(1)根據(jù)三角形的中位線定理可證得DE∥GF,DE=GF,即可證得結(jié)論;(2)根據(jù)三角形的中位線定理結(jié)合菱形的判定方法分析即可.【詳解】(1)∵D、E分別是邊AB、AC的中點.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四邊形DEFG是平行四邊形;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.連接AO,由(1)得四邊形DEFG是平行四邊形,∵點D,G,F(xiàn)分別是AB,OB,OC的中點,∴,,當AO=BC時,GF=DF,∴四邊形DGFE是菱形.本題主要考查三角形的中位線定理,平行四邊形、菱形的判定,平行四邊形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.23、見解析【分析】作線段AB的垂直平分線即可得到AB的中點D.【詳解】如圖,作線段AB的垂直平分線即可得到AB的中點D.此題考查作圖能力,作線段的垂直平分線,掌握畫圖方法是解題的關(guān)鍵.24、(1);(2);(3)﹣4﹤x﹤4;(4)見解析【分析】(1)由題意把A點或B點坐標代入得到,即可得出拋物線二次函數(shù)的解析式;(2)根據(jù)題意把A點或B點坐標代入y=kx+b,利用待定系數(shù)法即可求出一次函數(shù)直線AB的解析式;(3)由題意觀察函數(shù)圖像,根據(jù)y軸方向直線在曲線上方時,進而得出x的取值范圍;(4)根據(jù)題意求出C點坐標,進而由兩點的距離公式或者是構(gòu)造直角三角形進行分析求證即可.【詳解】解:(1)把A點或B點坐標代入得到,∴拋物線二次函數(shù)的解析式為:.(2)把A點或B點坐標代入y=kx+b列出方程組,解得,得出一次函數(shù)直線AB的解析式為:..(3)由圖象可以看出:一次函數(shù)直線AB的函數(shù)值大于二次函數(shù)的函數(shù)值的x的取值范圍為:﹣4﹤x﹤4.(4)由拋物線的表達式得:C點坐標為(-2,0),由兩點的距離公式或者是構(gòu)造直角三角形得出,,,.∴,∴△ACB是直角三角形.本題考查的是二次函數(shù)綜合運用,由題意結(jié)合一次函數(shù)和勾股定理的運用等進行分析是解題的關(guān)鍵.25、(問題呈現(xiàn))相等的弧所對的弦相等;同弧所對的圓周角相等;有兩組邊及其夾角分別對應相等的兩個三角形全等;(理解運用)1;(變式探究)DB=CD+BA;證明見解析;(實踐應用)1或.【分析】(問題呈現(xiàn))根據(jù)圓的性質(zhì)即可求解;(理解運用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(變式探究)證明△MAB≌△MGB(SAS),則MA=MG,MC=MG

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論